Abstract:
This invention concerns spectroscopy apparatus comprising a light source (101) arranged to generate a light profile (110) on a sample, a photodetector (103) having at least one photodetector element (104) for detecting characteristic light generated from interaction of the sample with light from the light source (101), a support (109) for supporting the sample, the support (109) movable relative to the light profile (110), and a processing unit (121). The processing unit (121) is arranged to associate a spectral value recorded by the photodetector element (104) at a particular time with a point on the sample predicted to have generated the characteristic light recorded by the photodetector element (104) at the particular time based on relative motion anticipated to have occurred between the support (109) and the light profile (110).
Abstract:
Improved gas leak detection from moving platforms is provided. Automatic horizontal spatial scale analysis can be performed in order to distinguish a leak from background levels of the measured gas. Source identification can be provided by using isotopic ratios and/or chemical tracers to distinguish gas leaks from other sources of the measured gas. Multi-point measurements combined with spatial analysis of the multi point measurement results can provide leak source distance estimates. These methods can be practiced individually or in any combination.
Abstract:
The invention relates to an inspection and repair module for an internal side wall of a vertically erected structure, with the module including a carrier for supporting at least one data recording mechanism and being securable to a hoist, and for an inspection and repair module for an internal wall of a conduit with the module including propulsion means comprising a set of driven tracked wheels controllable by a controller carried by the carrier and configured to provide, within a conduit, longitudinal forward and reverse motion.
Abstract:
The invention concerns the field of biomolecule formulation screening and stability testing. It concerns a method for the evaluation of the colloidal stability of liquid biopolymer solutions. The present invention describes a method for determining the stability of a liquid pharmaceutical composition comprising: a) providing a liquid pharmaceutical composition in a container, b) shaking said container on a shaker, whereby the shaker performs an oloid movement, c) determining the stability of said liquid pharmaceutical composition.
Abstract:
The invention relates to an inspection and repair module for an internal side wall of a vertically erected structure, with the module including a carrier for supporting at least one data recording mechanism and being securable to a hoist, and for an inspection and repair module for an internal wall of a conduit with the module including propulsion means comprising a set of driven tracked wheels controllable by a controller carried by the carrier and configured to provide, within a conduit, longitudinal forward and reverse motion.
Abstract:
A reagent card analyzer comprises an optical signal source configured to transmit an optical signal and an optical signal detector spaced a distance from the optical signal source to define an optical signal path into which the optical signal is transmitted, the optical signal detector configured to detect the optical signal and to output an electrical signal indicative of the optical signal. A reader is configured to read a reagent pad of a reagent card. A reagent card moving mechanism is configured to move the reagent card having the reagent pad including a leading and trailing end through the optical signal path. An optical detector interface is electrically coupled with the optical signal detector and configured to receive electrical signals and to output a pad detect signal indicative of at least one of the leading and the trailing end as the reagent card is moved through the optical signal path.
Abstract:
A device and method tests preforms that are rotationally symmetrical with respect to an axis of rotation during their conveyance along a conveyance path. The device and method tests only a statistically relevant number of produced preforms, thus allowing substantial reduction in the constructive complexity required for aligning the preforms prior to being tested. A certain number of preforms that have not been correctly aligned are allowed to continue along the conveyance path without being tested.
Abstract:
An automated station includes a plurality of panels forming an enclosure, a camera positioned within the enclosure, a light fixture positioned within the enclosure, a turntable positioned within the enclosure, an inspection device, and a computer controller functionally coupled to the camera, the light fixture, the turntable, and the inspection device. The computer controller controls the operation of the camera, the light fixture, the turntable, and the inspection device based on information received by the computer controller about an object to be photographed and inspected by the station. A method includes receiving an object into an automated station and a computer controller functionally coupled to the automated station performing the steps of: receiving information about the object, automatically adjusting one or more configuration options of the automated station based on the received information, and receiving input about whether the automated station will photograph the object, inspect the object, or both.
Abstract:
A lifter assembly for an optical system includes a chuck having a chuck base and a detachable top plate, wherein the detachable top plate is one of a plurality of interchangeable detachable top plates configured to support a substrate. The lifter assembly also includes a moveable plate supporting the chuck on an upper surface of the moveable plate, the moveable plate vertically adjustable between a lower, retracted position and an upper, extended position. The lifter assembly further includes a bellows structure operatively coupled to the moveable plate. The lifter assembly yet further includes a pneumatic system fluidly coupled to the bellows structure to selectively expand and contract, wherein expansion of the bellows structure vertically adjusts the moveable plate to the upper, extended position and contraction of the bellows structure vertically adjusts the moveable plate to the lower, retracted position.
Abstract:
There is an inspection system including multiple inspection units configured to inspect substrates, wherein each of the inspection units includes: a tester configured to inspect a substrate; a moving part configured to hold and move the substrate relative to the tester; and a frame structure configured to accommodate the tester and the moving part, wherein the frame structure of one inspection unit includes: a first frame to be connected to a frame structure of another inspection unit; and a second frame that accommodates at least the moving part and is configured to move relative to the first frame to extract the moving part from the first frame.