Abstract:
A controlling device (200) for operating a PC (208) and one or more home appliances (202). The described controlling device has integrated mouse and remote control functions, and may be configured to automatically detect whether the controlling device is being used as a mouse or as a remote control. For effective operation in both control modes, the controlling device includes both RF and IR transmitters, and is configured to transition between these transmission mediums based on the detection of whether the controlling device is being used as a mouse or as a remote control.
Abstract:
A multiply redundant safety system that protects humans and assets while transfer(s)/fuelling of on road/off road, rail, marine, aircraft, spacecraft, rockets, and all other vehicles/vessels utilizing Compressed and or Liquefied Gas Fuels/compound(s). Utilizing Natural Gas Chemical Family of Hydrogen/Propane/ethane/ammonia/and any mixtures along with or with out oxidizer(s), such as Liquefied Oxygen, Oxygen Triplet (O3)/ozone/hydrogen peroxide/peroxide/solid oxidizer(s) one or more processors, utilizing Artificial Intelligence techniques/machine learning in combination with one or more sensors; in combination with one or more micro switches/actuator(s) combine to detect any leaks/fire(s)/or explosion hazards/vehicle motion/arc's, spark(s)/and other hazards for quickly mitigating/locking out/stopping fueling/gas/transfers/vehicle releasing system(s).
Abstract:
A key fob includes a power amplifier including an output having an output impedance. A radio frequency antenna connected to the power amplifier output represents a first load impedance to the power amplifier output in a space substantially free of interference for radio frequency transmissions, and a second load impedance to the power amplifier output when a hand of a user is capacitively coupled to the antenna. The difference between the second load impedance and the output impedance of the power amplifier is less than the difference between the first load impedance and the output impedance.
Abstract:
A hand-held device with a sensor for providing a signal indicative of a position of the hand-held device relative to an object surface enables power to the sensor at a first time interval when the hand-held device is indicated to be in a position that is stationary and adjacent relative to the object surface, enables power to the sensor at a second time interval shorter than the first time interval when the hand-held device is indicated to be in a position that is moving and adjacent relative to the object surface, and enables power to the sensor at a third time interval when the hand-held device is determined to be in a position that is removed relative to the object surface.
Abstract:
A remote control for a monitoring system of a building is provided including a mobile device having a plurality of communication channels and a media storage area. An application is stored in the media storage area of the mobile device. The application is configured to communicate with a control panel of the monitoring system. The application dynamically selects a communication channel to establish a communication link with the control panel based on a predetermined hierarchy. The application operates in one of a plurality of modes based on the communication channel selected.
Abstract:
A method comprising for adjusting a power level in a key fob includes transmitting a first output signal at a first power setting. A feedback signal is received via a feedback mechanism that indicates a first power level of the first output signal. The first output level is compared to a threshold level. A second output signal at a second power setting greater than the first power setting is transmitted if the first output power level is below the threshold.
Abstract:
A hand-held device with a sensor for providing a signal indicative of a position of the hand-held device relative to an object surface enables power to the sensor at a first time interval when the hand-held device is indicated to be in a position that is stationary and adjacent relative to the object surface, enables power to the sensor at a second time interval shorter than the first time interval when the hand-held device is indicated to be in a position that is moving and adjacent relative to the object surface, and enables power to the sensor at a third time interval when the hand-held device is determined to be in a position that is removed relative to the object surface.
Abstract:
A remote control system includes a mobile device and a receiver connected to a control target. The mobile device includes an input unit accepting user's input operation; an operation signal transmission unit wirelessly transmitting an operation signal corresponding to the input operation during the input operation; a frequency switching determination unit determining whether to switch the transmission frequency band from a first frequency band to a second frequency band based on at least any one of a manner of the input operation and a state of wireless communication; and a transmission frequency switching unit switching the transmission frequency band when the frequency switching determination unit determines to switch the transmission frequency band. The receiver includes an operation signal reception unit receiving the operation signal; and a control unit controlling the control target on the basis of the received operation signal.
Abstract:
A passenger services system of an aircraft includes a cabin services system of a passenger service unit in the aircraft. The passenger service unit is associated with a passenger seat of the aircraft. The passenger services system further includes an infrared transmitting unit associated with the passenger seat. The infrared transmitting unit is configured to send signals to control operation of the cabin services system. The passenger services system includes a control unit including an infrared receiver. The control unit is associated with the passenger service unit. The infrared receiver is configured to receive the signals from the infrared transmitting unit. The control unit is configured to control the operation of the cabin services system in response to receiving the signals.