Abstract:
Provided is an image scanning unit which makes it possible to improve scanning accuracy while also making the overall body thinner by appropriately positioning a plurality of reflection members within an effective space in a carriage frame without wasting space. An image scanning unit, wherein a frame is divided into at least two spaces facing an irradiation surface, a first accommodation unit for accommodating a light source unit is formed in one of the spaces, a second accommodation unit for accommodating at least one reflection member is formed in the other adjacent space, a first reflection member for initially receiving light reflected from the irradiation surface is positioned at the side opposite the irradiation surface with the first accommodation unit positioned therebetween, and a light-shielding member is provided between the first reflection member and the reflection member positioned in the other space and prevents light that has strayed from a scanning light path from the first reflection member from being incident on the reflection member in the other space.
Abstract:
Since a light emitting surface in a cross section perpendicular to the longitudinal direction of a light guide is formed to have a smaller width than a reflecting surface, light of an LED, which is incident from an end surface of the light guide and is scattered throughout the entirety of the longitudinal direction in the reflecting surface, is condensed toward the light emitting surface, and is then emitted in the form of a band toward a document from the light emitting surface. Therefore, it is possible to provide a CIS module including an illumination unit having a new configuration capable of illuminating a portion where the document and an optical axis of the lens array included in the lens unit intersect, in the form of a band with high efficiency using the illumination unit.
Abstract:
A light guide inserted into an inclined groove is disposed so as to partially overlap with a lens unit that is fitted into a concave groove disposed parallel to the inclined groove when seen in a plan view, to regulate the separation of the lens unit from the concave groove and hold the lens unit in an insertion state by the light guide. Therefore, a fixing unit such as an adhesive agent is not required in fixedly disposing the light guide and the lens unit at a predetermined position of a frame, and a CIS module is assembled without using an adhesive agent, thereby allowing the CIS module that is easily disassembled when being discarded and that improves recycling efficiency to be provided.
Abstract:
A light guide member of the present invention is made of a light transmitting material. The light guide includes a light emitting surface 13, which extends in direction x and includes a lens surface 31 for converging light in direction y. The light guide also includes a light incident surface 11 provided at one of the ends spaced from each other in the direction x. The light emitting surface 13 includes a transitional region 13a adjacent to the light incident surface 11, where the transitional region includes the lens surface 31 and a round pillar surface 32. In the transitional region 13a, the lens surface 31 becomes less dominant in area as proceeding in the direction x toward the light incident surface 11.
Abstract:
An image reading apparatus includes a housing, a rod lens array, a light module and a sensor board. The housing accommodates the rod lens array, the light module and the sensor board. The sensor board includes a plurality of light sensor chips. The light module includes a light guide, a light source and guide terminals extending from the light source. The guide terminals are electrically connected to the sensor board with resilient contacts.
Abstract:
A rod-shaped light guide includes an end face to which light is incident, a bottom plane on which a scattering pattern to scatter light incident to the end face is formed, and a light emitting portion located to be opposite to the bottom plane and emitting light outside. The light emitting portion is formed as a first plane and a second plane connected to each other. The first plane is formed to be smaller than the second plane so that the cross section thereof perpendicular to the longitudinal direction is asymmetrical.
Abstract:
A multi-lightguide document imaging device is proposed for scanning a document transported atop it. The device includes a line image sensor module having a top sensing area and built-in circuitry for converting an incident line image into video signal output; an intervening rod lens for focusing line image lights from the document onto the sensing area; a number or lightguides lightguide-j (j=1,2, . . . ,N) disposed below the document where each lightguide-j has its own built-in light sources, a transverse cross section spaced at a distance SPCj from the scan line an oriented angularly along a θ-coordinate so as to project a line-illumination aiming at the scan line; and an imager frame having a base for holding the line image sensor module, a multi-element support for holding the rod lens plus the lightguides and a scan line backing portion for backing the document.
Abstract:
An image sensor module includes a light source, a light guide elongated in a first direction, a reflector covering the guide, and a light receiver for linear light reflected on a reading target in a second direction perpendicular to the first direction. The guide includes an incident surface for entering light from the light source, a reflecting portion for reflecting, in a direction crossing the first direction, the light from the incident surface, and a surface for emitting light from the reflecting portion as linear light elongated in the first direction. The reflector has an opening and an inclined surface. The opening extends in the first direction to pass the light reflected by the target. The inclined surface, at an end of the opening in the first direction, has a normal which is non-parallel to the first direction and a third direction perpendicular to the first and second directions.
Abstract:
An image reading apparatus includes a housing, a rod lens array, a light module and a sensor board. The housing accommodates the rod lens array, the light module and the sensor board. The sensor board includes a plurality of light sensor chips. The light module includes a light guide, a light source and guide terminals extending from the light source. The guide terminals are electrically connected to the sensor board with resilient contacts.
Abstract:
There is disclosed a light guide for guiding light from a light source in a longitudinal direction and radiating the light to illuminate an object to be illuminated, which includes a diffuser for diffusing the light from the light source along the longitudinal direction of the light guide, and a radiator for radiating the light diffused by the diffuser in a predetermined direction. By arranging the diffuser and the radiator so that a normal line passing through the center of the width of the diffuser is different from the predetermined direction at least in the vicinity of the light source when viewed in the longitudinal direction of the light guide, the illuminance distribution of the longitudinal direction of the light guide is uniformed.