Abstract:
A system and method of cooling a compressed working fluid is disclosed. The method includes compressing the working fluid above its critical pressure point in a compression stage to generate a compressed working fluid at or about local ambient temperature. The compressed working fluid can be cooled to below ambient by throttling a portion of the compressed working fluid to its saturated liquid-vapor state to generate a recycle working fluid. The recycle working fluid may then be atomized using an atomizing nozzle whereby the recycle working fluid evaporates and cools working fluid entering a target compression stage.
Abstract:
Apparatus and methods for separating a higher-density component from a lower-density component of a mixed flow, with the apparatus including a pressurized casing with a plurality of rotary separators disposed in parallel therein. The casing includes a fluid entrance assembly, a fluid outlet assembly, and a drain. The rotary separators each include an inlet fluidly coupled with the inlet of the fluid entrance assembly, a discharge in communication with the fluid outlet assembly, and an outlet passage in communication with the drain.
Abstract:
An apparatus and method for protecting an inner radial surface of a housing of a turbomachine from corrosion. The method includes tapering the inner radial surface of the housing and a corresponding outer radial surface of a corrosion-resistant liner, and heating the housing to increase a diameter of the inner radial surface of the housing. The method also includes inserting the corrosion-resistant liner at least partially into the housing, and attaching the corrosion-resistant liner to the inner radial surface of the housing using a solid-state bonding process.
Abstract:
A non-contacting shaft seal apparatus according to which an alternating array of axially-spaced, porous and non-porous annular segments extend radially-inward from the inside surface of an annular seal body and to a radial clearance defined between the segments and a rotating shaft.
Abstract:
An energy conversion system, including a wave chamber, and a turbine wheel coupled to a shaft and fluidly coupled with the wave chamber. The energy conversion system may also include a first radial flow passage fluidly coupled with the wave chamber and the turbine wheel, and first vanes disposed at least partially in the first radial flow passage, each of the first vanes being compliantly mounted and pivotal between first and second positions, the first vanes being configured to allow a motive fluid to flow in a first radial direction through the first radial flow passage when the first vanes are in the first position, and the first vanes being configured to substantially prevent the motive fluid from flowing through the first radial flow passage in a second radial direction when the second vanes are in the second position.
Abstract:
An auxiliary bearing system for supporting a rotating shaft including a first auxiliary bearing coupled to the rotating shaft. A first inertia ring is coupled to and circumscribes the first auxiliary bearing. A second inertia ring circumscribes the first inertia ring. A radial clearance is defined between the first and second inertia rings when the rotating shaft is supported by a primary bearing system, and the first inertia ring engages the second inertia ring when the rotating shaft is not supported by the primary bearing system. A second auxiliary bearing is engaged with an outer surface of the second inertia ring.
Abstract:
An apparatus for encasing a turbomachine. The apparatus includes a casing disposed circumferentially about a central axis, defining an interior chamber and a first access opening extending radially therethrough. The apparatus also includes a cover disposed in the interior chamber such that the cover is slidable along the central axis between an open position and a closed position, the cover being configured to permit access to the interior chamber through the first access opening when in the open position, and the cover extending across and substantially obstructing the first access opening when in the closed position.
Abstract:
A separator for a turbomachine including a coupler and a separation surface. The coupler has a central axis and is coupled to a drive shaft and to a second shaft, wherein rotation of the drive shaft rotates the coupler and the second shaft. The separation surface is disposed around the central axis and at least partially within or around the coupler to define a flow passage for a fluid stream between the separation surface and the coupler. Rotation of the drive shaft rotates the separation surface around the central axis so that a liquid within the fluid stream contacting the separation surface is separated from the fluid stream.
Abstract:
A system and method according to which a compressor having a first shaft is provided, and an aeroderivative gas turbine for driving the compressor is provided, the aeroderivative gas turbine including a gas generator and a power turbine coupled to the gas generator, the power turbine having a second shaft directly coupled to the first shaft of the compressor for directly driving the first shaft.
Abstract:
A fluid handling assembly is for a fluid machine that includes a casing and a shaft disposed within the casing so as to be rotatable about a central axis. An impeller is mounted on the shaft and has an inlet and a rotary separator is mounted on the shaft and has axially spaced apart inlet and outlet ends and an interior separation chamber. The separator is coupled with the impeller such that the separator and the impeller generally rotate as a single unit about the shaft axis and fluid within the separation chamber flows from the separator outlet end directly into the impeller inlet. Preferably, the separator includes a plurality of generally radially-extending blades disposed proximal to the separator inlet end and spaced circumferentially about the axis, the plurality of blades being configured to accelerate fluid flowing into the separator inlet end during rotation of the separator.