Abstract:
A solenoid valve (1) is described comprising a first port (2), a second port (3), a valve element (4) and a valve seat (5) arranged between said first port (2) and said second port (3), a coil (12) and a yoke arrangement (14-16), said coil (12) being magnetically linked to said yoke arrangement (14-16), said yoke arrangement (14-16) having a movable armature (16). In such a solenoid valve the generation of noise should be kept low. To this end said valve element (4) is driven by a pressure difference between a first pressure on a first side (6) of said valve element (4) and a second pressure on a second side (7) of said valve element (4), at least one of said first pressure and said second pressure being controlled by means of said armature (16), wherein said armature (16) comprises a first front face (18) at a first end and a second front face (19) at a second end opposite said first end, said first front face (18) and said second front face (19) being connected by a first flow path (21), said first flow path having first throttling means for keeping low a flow of a fluid flowing through said first flow path (21).
Abstract:
An electronic expansion valve (1) is provided, comprising an inlet (9), an outlet (8), an armature (2), a stop member (3), a biasing member (4) and a solenoid coil (12). The biasing member (4) provides a biasing force on the armature (2) towards a closing direction while the solenoid coil (12) may be provided with a current to provide a magnetic force on the armature (2) towards an opening direction. It is intended to provide an electronic expansion valve that may be controlled more precisely and has a higher safety. To this end the pressure difference between the inlet pressure and the outlet pressure provides a differential pressure force on the armature (2) towards an opening direction to allow a fluid flow from the inlet (9) to the outlet (8), and furthermore the armature (2) is displaced away from the stop member (3) to allow a fluid flow from the inlet (9) to the outlet (8) if the sum of the magnetic force and the differential pressure force on the armature (2) exceeds the biasing force. The invention furthermore relates to a refrigeration system comprising such an electronic expansion valve as well as a method for calibrating such an electronic expansion valve.
Abstract:
A sensor comprising a tubular member (9), a diaphragm (10) mounted on a first end of the tubular member (9) and a sensing element (11) mounted on the diaphragm (10). One or more electrical wires (12) provide electrical connection between the sensing element (11) and a sensor electronics unit (25) arranged at a second end of the tubular member (9). The wires (12) are arranged inside one or more through-going channels (16) provided in a wall part of the tubular member (9), the channels (16) extending in an axial direction defined by the tubular member (9).
Abstract:
An expansion valve (1) for a vapour compression system, the valve comprising a first valve part (5) having an outlet orifice (7) and a piston (8) movable inside the outlet orifice (7) in response to a differential pressure across the expansion valve (1), controlling a fluid flow through the first valve part (5), via a forward fluid passage through the first valve part (5). The piston (8) has different cylindrical shapes stepwise along a longitudinal extension of the piston (8), the piston (8) defining a first cross-sectional area along a first longitudinal extension and a second-cross sectional area along a second longitudinal extension, the first cross-sectional area being smaller than the second-cross sectional area. The first longitudinal extension is in the outlet orifice (7) at a first differential pressure and the second longitudinal extension is in the outlet orifice (7) at a second differential pressure, the first differential pressure being lower than the second differential pressure.
Abstract:
An expansion valve (1) for a vapour compression system, the valve (1) comprising a first valve part (5) having an outlet orifice (7) and a piston (8) movable inside the outlet orifice (7) in response to a differential pressure across the expansion valve (1), controlling a fluid flow through the valve (1). The piston (8) comprises a stop element (9) at an outlet end (8b) of the piston (8) and mechanical forcing means (10) to force the piston (8) towards a position in which the stop element (9) is brought into abutment with a valve seat (12) of the first valve part (5). A differential pressure below a predefined threshold value causes the stop element (9) of the piston (8) to abut the valve seat (12) of the first valve part (5), preventing fluid flow through the first valve part (5), via the forward fluid passage.
Abstract:
The invention relates to a valve (10) comprising a casing (11,12) and an actuator (15). The valve comprises a center tube (21) placed parallel in relation to the longitudinal extension of the valve, and a closing element (18) being placed along the extension of the center tube, and said closing element at least partly extending along a sidewall of the center tube. The closing element is movable along the longitudinal extension of the valve and in relation to the center tube between a first position, where the closing element closes the one or more orifices (24), thereby not allowing fluid to pass the orifices, and a second position, where the one or more orifices are open, thus allowing fluid to pass the orifices. The invention also relates to a method of assembling the valve and to a vapor compression system, preferably a refrigeration system.
Abstract:
The invention relates to a method for configuring, on a control unit, operating parameters of a plurality of devices of a refrigeration system. A user selects on the control unit, among the plurality of devices of the refrigeration system, a first device to configure. Information of valid configurable operating parameters of the first device is provided on the control unit. The user selects at least one of the valid configurable operating parameters of the first device, thereby configuring the first device. Information stored about operating parameters of other devices of the refrigeration system, based on the configuration of the first device, is then provided on the control unit. Finally, the user confirms, on the control unit, one or more operating parameters of one or more of the other devices, thereby configuring the one or more other devices. The invention also relates to a control unit and a refrigeration system.
Abstract:
A mechanism is described for determining whether or not a ground connection is properly earthed by determining whether or not a potential difference exists between a voltage measuring point and a ground connection. A first capacitor is connected between the ground connection and a first power line and a first duplicating capacitor (having the same capacitance as the first capacitor) is connected between the voltage measuring point and the first power line. If the determining step determines that the potential difference does not exist, then it is determined that the ground connection is not properly earthed.
Abstract:
A flow control valve (1) for a refrigeration system Is disclosed. The valve (1) comprises a valve port (14) having a substantially cylindrical inner circumference arranged to receive a protruding portion of a valve member (5). The valve member (5) comprises a protruding portion having a substantially cylindrical outer circumference corresponding to the inner circumference of the valve port (14), said protruding portion also having at least one fluted part (16), said at least one fluted part (16) defining fluid passage along the at least one fluted part (16) when the valve member (5) is in the open position. The valve member (5) is provided with at least one first fluid passage (6) extending through the valve member (5) between a second valve chamber (15) and a pressure balancing chamber (8), and at least one second fluid passage (7) establishing a fluid connection between a first valve chamber (12) and the first fluid passage (6). The second fluid passage (7) has an opening arranged on the substantially cylindrical part of the protruding portion of the valve member (5). The invention allows the pressure of the balancing chamber (8) to be adjusted independently of the primary flow through the valve (1), via the fluted parts(s) (16).
Abstract:
A proportional valve is provided comprising a valve (1) comprising a housing (2) having an inlet (3) and an outlet (4), a valve element (5) being positioned be¬ tween said inlet (3) and said outlet (4), said valve element (5) being moveable in said housing (2), said valve element (5) having a pilot valve opening (7), a first pressure chamber (16), a pressure in said first pressure chamber (16) acting on said valve element (5) in a first direction, a second pressure chamber (17), a pressure in said pressure chamber (17) acting on said valve element (5) in a second direction opposite to said first direction, a pilot valve element (6) coop¬ erating with said pilot valve opening (7) to form a pilot valve, said pilot valve element (6) being actuated by drive means (8), wherein a flow resistance be¬ tween said inlet (3) and said first pressure chamber (16) is smaller than a flow resistance between said inlet (3) and said second pressure chamber (17). In such valve it is possible to reduce the electrical power needed to operate the solenoid. To this end said pilot valve opens into a third pressure chamber (19), said third pressure chamber (19) being connected to said outlet (3) via a throttled flow path (20).