Abstract:
A composition comprising a functional polymeric phase change material, the functional polymeric phase change material carrying at least one reactive function, wherein the reactive function is capable of forming at least a first electrovalent bond. In certain embodiments, the reactive function is capable of forming at least a first electrovalent bond with a second material. In other embodiments, the functional polymeric phase change material comprises at least one crystallizable section and may also comprise a backbone chain and a plurality of side chains, wherein the plurality of side chains form the crystallizable section.
Abstract:
Cellulosic fibers having enhanced reversible thermal properties and methods of forming such cellulosic fibers are described. In one embodiment, a cellulosic fiber includes a fiber body formed of an elongated member. The elongated member includes a cellulosic material and a temperature regulating material dispersed within the cellulosic material. The temperature regulating material includes a phase change material having a transition temperature in the range of -5°C to 125°C. The cellulosic fiber can be formed via a solution spinning process and can be used in various products where thermal regulating properties are desired. For example, the cellulosic fiber can be used in textiles, apparel, footwear, medical products, containers and packagings, buildings, appliances, and other products.
Abstract:
A composition comprising a functional polymeric phase change material, the functional polymeric phase change material carrying at least one reactive function, wherein the reactive function is capable of forming at least a first covalent bond. In certain embodiments, the reactive function is capable of forming at least a first covalent bond with a second material. In other embodiments, the functional polymeric phase change material comprises at least one crystallizable section and may also comprise a backbone chain and a plurality of side chains, wherein the plurality of side chains form the crystallizable section.
Abstract:
A coated article includes a substrate and a coating covering at least a portion of the substrate. The coating includes a binder having a glass transition temperature in the range of -110°C to -40°C. The coating also includes a set of microcapsules having sizes in the range of 1 micron to 15 microns, and at least one of the set of microcapsules is chemically bonded to either of, or both, the substrate and the binder.
Abstract:
Multi-component fibers having enhanced reversible thermal properties and methods of manufacturing thereof are described. In one embodiment, a multi-component fiber includes a fiber body formed from a set of elongated members, and at least one of the set of elongated members includes a temperature regulating material having a latent heat of at least 40 J/g and a transition temperature in the range of 22 °C to 40 °C. The temperature regulating material provides thermal regulation based on at least one of absorption and release of the latent heat at the transition temperature. The multi-component fiber can be formed via a melt spinning process or a solution spinning process and can be used or incorporated in various products where a thermal regulating property is desired. For example, the multi-component fiber can be used in textiles, apparel, footwear, medical products, containers and packagings, buildings, appliances, and other products.
Abstract:
Polymeric composites and methods of manufacturing polymeric composites are described. In one embodiment, a set of microcapsules containing a phase change material are mixed with a dispersing polymeric material to form a first blend. The dispersing polymeric material has a latent heat of at least 40 J/g and a transition temperature in the range of 0°C to 50°C. The first blend is processed to form a polymeric composite. The polymeric composite can be formed in a variety of shapes, such as pellets, fibers, flakes, sheets, films, rods, and so forth. The polymeric composite can be used as is or incorporated in various articles where a thermal regulating property is desired.
Abstract:
Multi-component fibers having enhanced reversible thermal properties and methods of manufacturing thereof are described. In one embodiment, a multi-component fiber includes a fiber body formed from a set of elongated members, and at least one of the set of elongated members includes a temperature regulating material having a latent heat of at least 40 J/g and a transition temperature in the range of 22 °C to 40 °C. The temperature regulating material provides thermal regulation based on at least one of absorption and release of the latent heat at the transition temperature. The multi-component fiber can be formed via a melt spinning process or a solution spinning process and can be used or incorporated in various products where a thermal regulating property is desired. For example, the multi-component fiber can be used in textiles, apparel, footwear, medical products, containers and packagings, buildings, appliances, and other products.
Abstract:
The invention relates to a multi-component fiber having enhanced reversible thermal properties. The multi-component fiber comprises a fiber body formed from a plurality of elongated members, at least one of the elongated members having a temperature regulating material dispersed therein. The temperature regulating material comprises a phase change material. The multi-component fiber may be used or incorporated in various articles and applications where a thermal regulating property is desired. For example, the multi-component fiber may be used in textiles, apparel, footwear, medical products, containers and packagings, buildings, appliances, and other products.