Determining metrics of a cloud atmosphere using time-difference measurements

    公开(公告)号:US11630215B2

    公开(公告)日:2023-04-18

    申请号:US16275152

    申请日:2019-02-13

    Abstract: Apparatus and associated methods relate to determining metrics of a cloud atmosphere using time difference measurements. A light projector projects a pulse of light into a cloud atmosphere, and a light sensor detects a portion of the projected pulse of light backscattered by the cloud atmosphere. A backscatter coefficient is calculated based on peak amplitude of the detected portion. An optical extinction coefficient is calculated based on a time difference between a peak time and a post-peak time, which correspond to times at which the peak amplitude of the detected portion occurs and at which the detected portion equals or crosses a sub-peak threshold, respectively. In some embodiments, a logarithm amplifier is used to facilitate processing of signals of widely varying amplitudes. In some embodiments, the sub-peak threshold is calculated as a fraction of the peak amplitude of the detected portion.

    MULTI-FIBER OPTICAL SENSOR FOR LIGHT AIRCRAFT

    公开(公告)号:US20230081599A1

    公开(公告)日:2023-03-16

    申请号:US17475819

    申请日:2021-09-15

    Inventor: Mark Ray

    Abstract: A multi-fiber optical sensor system includes a light source configured to generate light energy, a transmitter fiber configured to receive the light energy from the light source and to project light energy out of a projecting end of the transmitter fiber over a transmitter fiber field of view, and a plurality of receiver fibers. Each of the plurality of receiver fibers has a receiving end aligned proximate and substantially parallel to the projecting end of the transmitter fiber and is configured to receive a received portion of the projected light energy reflected from a target within a receiver field of view. The multi-fiber optical sensor system also includes a lenslet array configured to shape the transmitter fiber field of view and give the transmitter field of view a finite cross-sectional area. The lenslet array has a plurality of lens corresponding to the transmitter fiber and each of the plurality of receiver fibers and is further configured to shape the receiver fiber field of view, tilt the center of the field of view with respect to the axis of the projected light energy for each of the plurality of receiver fibers and give the receiver fiber field of view for each of the plurality of receiver fibers a finite cross-sectional area. The multi-fiber optical sensor system also includes a detector configured to detect the portion of the projected light energy received by each of the plurality of receiver fibers. The receiver fiber field of view for each of the plurality of receiver fibers crosses the transmitter fiber field of view between a first crossing point at a distance Rmin from a lens axis and a last crossing point at a distance Rmax from the lens axis. There is a center crossing point Rmid at a point where a centerline of the receiver fiber field of view for each of the plurality of receiver fibers crosses a centerline of the transmitter fiber field of view. The range between Rmin and Rmax for each of the plurality of receiver fibers defines a detection zone such that each of the plurality of receiver fibers has a unique detection zone. Targets include a hard target and/or constituents of a cloud atmosphere.

    Pitot heater health monitoring system

    公开(公告)号:US11604209B2

    公开(公告)日:2023-03-14

    申请号:US16512816

    申请日:2019-07-16

    Inventor: Shoyeb Khan

    Abstract: Provided are embodiments including a system for performing health monitoring. The system includes a measurement device configured to measure pressure of an environment, a heating element of the heater section coupled to the measurement device, a first sensing element operably coupled to a first region of the measurement device, and a second sensing element operably coupled to a second region of the measurement device. The system also includes a programmable logic that is configured to generate a status signal or flag based at least in part on conditions of the first region or the second region of the measurement device, a processing system configured to control the heating element responsive to reaching a threshold temperature, and a display configured to display a status of the first region or second region of the measurement device based at least in part on the status signal or flag.

    Fluid valve
    154.
    发明授权

    公开(公告)号:US11592115B2

    公开(公告)日:2023-02-28

    申请号:US16686901

    申请日:2019-11-18

    Abstract: A fluid valve comprises a valve housing having at least one fluid inlet and at least one fluid outlet and having a valve axis. At least one of the inlet and outlet is arranged in a wall extending circumferentially about the valve axis. The valve further comprises a rotary valve body arranged within the valve housing for rotation about the valve axis. The rotary valve body comprises a frusto-conical valve body wall and at least one inlet or outlet valve body opening through the valve body wall, the valve body being rotatable about the valve axis so as selectively to place the valve housing inlet and valve housing outlet into fluid communication via the at least one valve body opening. The at least one inlet or outlet valve body opening is a slot which extends in the direction of the valve axis.

    AIRCRAFT DOOR CAMERA SYSTEM FOR DOCKING ALIGNMENT MONITORING

    公开(公告)号:US20230052176A1

    公开(公告)日:2023-02-16

    申请号:US17886196

    申请日:2022-08-11

    Abstract: A camera with a field of view toward an external environment of an aircraft is disposed within an aircraft door such that a ground surface is within the field of view of the camera during taxiing of the aircraft. A display device is disposed within an interior of the aircraft. A processor is operatively coupled to the camera and to the display device. The processor analyzes image data captured by the camera for docking guidance by identifying, within the captured image data, a region on the ground surface corresponding to an alignment fiducial indicating a parking location for the aircraft, determining, based on the region of the captured image data corresponding to the alignment fiducial indicating the parking location, a relative location of the aircraft with respect to the alignment fiducial, and outputting an indication of the relative location of the aircraft to the alignment fiducial.

    CONFIGURABLE VARIABLE SWEEP VARIABLE SPEED WIPER SYSTEM

    公开(公告)号:US20220388481A1

    公开(公告)日:2022-12-08

    申请号:US17891619

    申请日:2022-08-19

    Abstract: A configurable windshield wiper system for a variable sweep angle α nd/or variable sweep speed. The system includes a bidirectional motor, a gearbox, the gearbox having and input shaft operably coupled to the motor and an output shaft; the gear box configured to ratiometrically step down the number of turns at its output shaft relative to its input shaft; a wiper arm for sweeping a surface of a windshield, the wiper arm operably coupled to an output of the gearbox; and a controller in operable communication with the motor, the controller configured to execute an algorithm to control the position and speed of the motor to achieve a configured sweep angle α nd configured sweep speed for the wiper arm.

    Dynamic security approach for WAIC baseband signal transmission and reception

    公开(公告)号:US11509633B2

    公开(公告)日:2022-11-22

    申请号:US16724557

    申请日:2019-12-23

    Abstract: Provided are embodiments for performing encryption and decryption. Embodiments include generating a random key address, obtaining a pre-stored key using the random key address, and re-arranging portions of the pre-stored key using the random key address and a first enable signal. Embodiments also include selecting a dynamic logic operation based on the random key address and a second enable signal, receiving data for encryption, and combining portions of the received data for encryption with the re-arranged portions of the pre-stored key using the dynamic logic operation to produce encrypted data. Embodiments include re-arranging portions of the encrypted data based on the random key address and a third enable signal, and combining the re-arranged portions of the encrypted data with the random key address into an encrypted data packet for transmission. Also provided are embodiments for a transmitter and receiver for performing the encryption and decryption.

    Air data systems
    160.
    发明授权

    公开(公告)号:US11486891B2

    公开(公告)日:2022-11-01

    申请号:US16523254

    申请日:2019-07-26

    Abstract: An air data sensor can include an acoustic transmitter configured to output an acoustic signal into an airflow and a plurality of acoustic transducers configured to receive the acoustic signal output by the acoustic transducer. The air data sensor can also include a light source configured to output a light beam into the airflow, and a light receiver configured to receive scattered light from the light beam. The light source and the light receiver can be bistatic such that a measurement zone is formed away from the air data sensor.

Patent Agency Ranking