Abstract:
A general purpose, programmable media processor (12) for processing and transmitting a media data streams. The media processor (12) incorporates an execution unit (100) that maintains substantially peak data through out of media data streams. The execution unit (100) includes a dynamically partionable multi-precision arithmetic unit (102), programmable switch (104) and programmable extended mathematical element (106). A high bandwidth external interface (124) supplies media data streams at substantially peak rates to a general purpose register file (110) and the execution unit. A memory management unit, and instruction and data cache/buffers (118, 120) are provided. The general purpose, programmable media processor (12) is disposed in a network fabric consisting of fiber optic cable, coaxial cable and twisted pair wires to transmit, process and receive single or unified media data streams.
Abstract:
A set-top box for processing streams of media data which comprise a combination of at least two of audio, video, radio, graphics, encryption, authentication, and networking information. The set-top box processes streams of media data and has at least one programmable media processor (12) for receiving, processing and transmitting the stream of media data over the bi-directional communications network. The processor executes group instructions to read a plurality of data elements of the media data stream from a register file (110), to perform, on the data elements, group operations including both group integer and group floating point operations capable of dynamically partitioning the data by each specifying one of a plurality of data element sizes, and to write concatenated results in the register file.
Abstract:
A communication network capable of for processing streams of media data which comprise a combination of at least two of audio, video, radio, graphics, encryption, authentication, and networking information. The communications network processes streams of media data and has at least one programmable media processor (12) for receiving, processing and transmitting the stream of media data over the bi-directional communications network. The processor executes group instructions to read a plurality of data elements of the media data stream from a register file (100), to perform, on the data elements, group operations including both group integer and group floating point operations capable of dynamically partitioning the data by each specifing one of a plurality of data element sizes, and to write concatenated results in the register file. Each media processor (12) is reprogrammable by receiving downloaded software over the network.
Abstract:
A general purpose, programmable media processor (12) for processing and transmitting a media data streams. The media processor (12) incorporates an execution unit (100) that maintains substantially peak data through out of media data streams. The execution unit (100) includes a dynamically partionable multi-precision arithmetic unit (102), programmable switch (104) and programmable extended mathematical element (106). A high bandwidth external interface (124) supplies media data streams at substantially peak rates to a general purpose register file (110) and the execution unit. A memory management unit, and instruction and data cache/buffers (118, 120) are provided. The general purpose, programmable media processor (12) is disposed in a network fabric consisting of fiber optic cable, coaxial cable and twisted pair wires to transmit, process and receive single or unified media data streams.
Abstract:
A general purpose, programmable media processor (12) for processing and transmitting a media data streams. The media processor (12) incorporates an execution unit (100) that maintains substantially peak data through out of media data streams. The execution unit (100) includes a dynamically partionable multi-precision arithmetic unit (102), programmable switch (104) and programmable extended mathematical element (106). A high bandwidth external interface (124) supplies media data streams at substantially peak rates to a general purpose register file (110) and the execution unit. A memory management unit, and instruction and data cache/buffers (118, 120) are provided. The general purpose, programmable media processor (12) is disposed in a network fabric consisting of fiber optic cable, coaxial cable and twisted pair wires to transmit, process and receive single or unified media data streams.
Abstract:
A general purpose, programmable media processor (12) for processing and transmitting a media data streams. The media processor (12) incorporates an execution unit (100) that maintains substantially peak data through out of media data streams. The execution unit (100) includes a dynamically partionable multi-precision arithmetic unit (102), programmable switch (104) and programmable extended mathematical element (106). A high bandwidth external interface (124) supplies media data streams at substantially peak rates to a general purpose register file (110) and the execution unit. A memory management unit, and instruction and data cache/buffers (118, 120) are provided. The general purpose, programmable media processor (12) is disposed in a network fabric consisting of fiber optic cable, coaxial cable and twisted pair wires to transmit, process and receive single or unified media data streams.
Abstract:
A general purpose, programmable media processor (12) for processing and transmitting a media data streams. The media processor (12) incorporates an execution unit (100) that maintains substantially peak data through out of media data streams. The execution unit (100) includes a dynamically partionable multi-precision arithmetic unit (102), programmable switch (104) and programmable extended mathematical element (106). A high bandwidth external interface (124) supplies media data streams at substantially peak rates to a general purpose register file (110) and the execution unit. A memory management unit, and instruction and data cache/buffers (118, 120) are provided. The general purpose, programmable media processor (12) is disposed in a network fabric consisting of fiber optic cable, coaxial cable and twisted pair wires to transmit, process and receive single or unified media data streams.
Abstract:
A general purpose, programmable media processor (12) for processing and transmitting a media data streams. The media processor (12) incorporates an execution unit (100) that maintains substantially peak data through out of media data streams. The execution unit (100) includes a dynamically partionable multi-precision arithmetic unit (102), programmable switch (104) and programmable extended mathematical element (106). A high bandwidth external interface (124) supplies media data streams at substantially peak rates to a general purpose register file (110) and the execution unit. A memory management unit, and instruction and data cache/buffers (118, 120) are provided. The general purpose, programmable media processor (12) is disposed in a network fabric consisting of fiber optic cable, coaxial cable and twisted pair wires to transmit, process and receive single or unified media data streams.
Abstract:
A process for the computer creation of fuzzy cognitive maps (see Fig. 7) that are used to explore causal relationships (302) between a group of factors and a phenomenon. These fuzzy cognitive maps are constructed using the data derived from Expanded Meta Models (25). These Expanded Meta Models are generated from Monte Carlo simulations that supply the factors under investigation with values, then by incrementing or decrementing these factor values one can generated an Expanded Meta Model (25).
Abstract:
The present invention provides a cross-bar circuit (100) that implements a switch (115) of a broadband processor. The cross-bar circuit (100) includes: a switch circuit (115) which includes 2m.2n:1 multiplexor circuits (202-204) where each of the 2n:1 multiplexor circuits (202-204) has a unique n-bit index input, one disable input, and a 2n-bit wide source input receives an n-bit index at the n-bit index input, a disable bit at the disable input, and the 2n-bit input source word at the 2n-bit wide source input, and decodes the n-bit index either to select and output as an output destination bit one bit from the 2n-bit input source word if the disable bit has a logic low value; a cache memory (110) that has 2m cache datapath inputs; and 2m cache index input; and a control circuit (105) that has a plurality of control inputs receives the partially decoded instruction information on the plurality of control inputs, provides a second set of the n-bit indexes for the switch circuit (115), and provides the disable bits for the switch circuit (115) where the control circuit (105) is logically coupled to the switch circuit (115) and to the cache memory (110).