Abstract:
The present invention relates to a polymer electrolyte membrane fuel cell containing a complex catalyst in which an alloy or a mixture of phosphoric acid-doped polyimidazole based electrolyte thin film, metals, and chalcogen elements are deposited on a carbon carrier. According to the present invention, a user can utilize the polymer electrolyte membrane fuel cell with an improved tenacity, power generation efficiency, and stability in a high temperature operation, and use a simple production method of the complex catalyst included in the present invention.
Abstract:
본 발명은 유체 펌핑 장치에 관한 것으로, 보다 상세하게는 연료전지 시스템 등에서 사용될 수 있는 유체 펌핑 장치에서, 펌프와 고온의 유체가 통과하는 유체의 일시적 저장부를 공간적으로 분리시킴으로써, 펌프의 내구성을 유지시키고, 교체 및 관리가 용이하며, 경량화가 가능한 유체 펌핑 장치에 관한 것이다. 또한 본 발명의 유체 펌핑 장치는 설치 장소의 제약이 없으며, 장치가 간단할 뿐만 아니라 고장 요인이 적은 효과를 가진다. 아울러 본 발명에 따른 연료전지용 유체 펌핑 장치는 별도의 냉각과정 없이도 고온 가스를 펌핑(pumping) 할 수l 있으며, 따라서 연료 사용률을 높여 연료전지 시스템의 효율 향상에 기여한다.
Abstract:
세리아 또는 금속 도핑된 세리아 및 리튬 염, 나아가 산화 비스무스로 이루어지는 세리아계 조성물, 세리아계 복합 전해질 분말 및 이를 이용한 소결 방법 및 소결체가 제공된다. 일예로서 상기 리튬 염은 세리아계 조성물에 대하여 0 중량% 초과 5 중량% 이하로, 산화 비스무스는 0 중량% 초과 10 중량% 이하로 포함된다. 세리아계 물질에 저융점 및/또는 휘발성의 화합물들을 첨가함으로써, 소결 온도를 낮출 수 있으며, 세리아계 단독으로 사용하는 경우의 기존 소결 온도인 1500℃ 보다 훨씬 낮은 저온 예컨대 1000℃ 이하에서도 높은 복합체 소결 밀도 예컨대 95% 이상의 소결 밀도를 확보할 수 있다.
Abstract:
본 발명은 술폰화 탄화수소계 고분자 및 술폰화 폴리벤즈이미다졸계 고분자의 블렌드(blend)를 포함하는 고분자 전해질막, 이의 제조방법, 상기 고분자 전해질막을 포함하는 막-전극 접합체 및 연료전지에 관한 것이다. 본 발명에 따르면, 술폰화 탄화수소계 고분자와 블렌드된 술폰화 폴리벤즈이미다졸계 고분자를 통해, 술폰화 탄화수소계 고분자를 포함하는 전해질막의 물성 및 치수안정성을 향상시킬 수 있으며, 궁극적으로 상기 고분자 전해질막을 포함하는 연료전지의 경우, 성능을 효율적으로 향상시킬 수 있다. 고분자 전해질막, 술폰화 폴리벤즈이미다졸
Abstract:
PURPOSE: A polymer electrolyte membrane for a fuel cell is provided to improve physical properties and dimensional stability through a sulfonated hydrocarbon polymer and a sulfonated polybenzimidazole polymer. CONSTITUTION: A method for manufacturing a polymer electrolyte membrane for a fuel cell comprises the steps of: (i) respectively synthesizing a sulfonated hydrocarbon polymer and a sulfonated polybenzimidazole polymer; (ii) dissolving the sulfonated hydrocarbon polymer and sulfonated polybenzimidazole polymer in a solvent to prepare a film containing the sulfonated hydrocarbon polymer and sulfonated polybenzimidazole polymer; (iii) drying the film and evaporating a solvent; and (iv) performing acid treatment of the film to prepare a proton electrolyte membrane.
Abstract:
PURPOSE: A manufacturing method of a membrane-electrode assembly, a membrane-electrode assembly manufactured therefrom, and a fuel cell including thereof are provided to remarkably improve the porosity, and to enhance the power density of the fuel cell. CONSTITUTION: A manufacturing method of a membrane-electrode assembly comprises the following steps: producing catalytic ink slurry with a catalyst, an ion-conductive polymer, and a solvent; spreading the catalytic ink slurry to a supporting film, and vacuum drying the slurry; and transferring the supporting film to one or both sides of an electrolyte film, to form a catalyst layer on the electrolyte film.
Abstract:
A bipolar plate for cooling a molten carbonate fuel cell is provided to accomplish effective cooling of a stack while not causing generation of thermal stress or a drop in the efficiency in a cost-efficient manner. A bipolar plate for cooling a molten carbonate fuel cell comprises a cooling gas flow path therein, wherein the cooling gas is an anode cooling gas or cathode cooling gas having a lower temperature than a conventional anode gas(g1) or conventional cathode gas(g2) supplied to the anode(A) or cathode(C) of the molten carbonate fuel cell. The bipolar plate takes the form of an internal manifold. The bipolar plate further comprises an introduction duct through which the cooling gas is guided into the bipolar plate.
Abstract:
A membrane electrode assembly for a fuel cell is provided to improve the quality of a fuel cell even under a non-humidified condition or high temperature condition, thereby simplifying water control occurring in a humidified condition or avoiding a need for a humidifier. A membrane electrode assembly for a fuel cell comprises an inorganic hygroscopic material in the assembly. The inorganic hygroscopic material is TEOX(tetraethyl orthosilicate), zirconium propoxide or titanium t-butoxide. The inorganic hygroscopic material is used in an amount of 0.01g-0.1g. The membrane electrode assembly comprises the inorganic hygroscopic material on either or both of the membrane side and electrode side.
Abstract:
A portable fuel cell device, and a method for driving the portable fuel cell device are provided to minimize the loss of the produced energy by reducing the concentration of fuel and maximizing the use of a secondary battery when the operation of a fuel cell is stopped. A portable fuel cell device comprises a fuel cell(10) which comprises a unit cell or a stack of unit cells; a secondary battery(31) which can be charged and discharged; and a power control device which supplies the power received from the fuel cell to application equipment(40), is connected with the secondary battery to supply or be supplied power, supplies power for operating the fuel cell, contains a DC-DC converter, measures the voltage of the fuel cell, and controls the supply of power based on the measured voltage, wherein the power control device is supplied with power from the fuel cell from the stabilization state where the voltage measured at the fuel cell is constant after the drive of the fuel cell.