Abstract:
PURPOSE: A manufacturing method of a membrane-electrode assembly, a membrane-electrode assembly manufactured therefrom, and a fuel cell including thereof are provided to remarkably improve the porosity, and to enhance the power density of the fuel cell. CONSTITUTION: A manufacturing method of a membrane-electrode assembly comprises the following steps: producing catalytic ink slurry with a catalyst, an ion-conductive polymer, and a solvent; spreading the catalytic ink slurry to a supporting film, and vacuum drying the slurry; and transferring the supporting film to one or both sides of an electrolyte film, to form a catalyst layer on the electrolyte film.
Abstract:
A bipolar plate for cooling a molten carbonate fuel cell is provided to accomplish effective cooling of a stack while not causing generation of thermal stress or a drop in the efficiency in a cost-efficient manner. A bipolar plate for cooling a molten carbonate fuel cell comprises a cooling gas flow path therein, wherein the cooling gas is an anode cooling gas or cathode cooling gas having a lower temperature than a conventional anode gas(g1) or conventional cathode gas(g2) supplied to the anode(A) or cathode(C) of the molten carbonate fuel cell. The bipolar plate takes the form of an internal manifold. The bipolar plate further comprises an introduction duct through which the cooling gas is guided into the bipolar plate.
Abstract:
A membrane electrode assembly for a fuel cell is provided to improve the quality of a fuel cell even under a non-humidified condition or high temperature condition, thereby simplifying water control occurring in a humidified condition or avoiding a need for a humidifier. A membrane electrode assembly for a fuel cell comprises an inorganic hygroscopic material in the assembly. The inorganic hygroscopic material is TEOX(tetraethyl orthosilicate), zirconium propoxide or titanium t-butoxide. The inorganic hygroscopic material is used in an amount of 0.01g-0.1g. The membrane electrode assembly comprises the inorganic hygroscopic material on either or both of the membrane side and electrode side.
Abstract:
A portable fuel cell device, and a method for driving the portable fuel cell device are provided to minimize the loss of the produced energy by reducing the concentration of fuel and maximizing the use of a secondary battery when the operation of a fuel cell is stopped. A portable fuel cell device comprises a fuel cell(10) which comprises a unit cell or a stack of unit cells; a secondary battery(31) which can be charged and discharged; and a power control device which supplies the power received from the fuel cell to application equipment(40), is connected with the secondary battery to supply or be supplied power, supplies power for operating the fuel cell, contains a DC-DC converter, measures the voltage of the fuel cell, and controls the supply of power based on the measured voltage, wherein the power control device is supplied with power from the fuel cell from the stabilization state where the voltage measured at the fuel cell is constant after the drive of the fuel cell.
Abstract:
A method for preparing a pure Ni3Al intermetallic compound at a low temperature is provided, wherein the method enables a Ni3Al intermetallic compound that is particularly pure and has further improved oxidation resistance to be acquired at a low temperature by controlling the content of Ni or Al contained in a simple mixture of Ni and Al in a conventional method for preparing a Ni2Al intermetallic compound at a low temperature using AlCl3. As a preparation method of a NiAl intermetallic compound, a method for preparing a pure Ni3Al intermetallic compound at a low temperature comprises: a step of preparing a mixed powder by mixing a Ni powder with an Al powder, wherein contents of Ni and Al to be mixed with each other are controlled when preparing the mixed powder to form a pure Ni3Al intermetallic compound; and another step of preparing a pure Ni3Al intermetallic compound by introducing AlCl3 as an activator into the reactor at a temperature of a melting point or less of Ni and Al and reacting the mixed powder after injecting the mixed powder into a reactor.
Abstract:
Provided are a honeycomb type solid oxide fuel cell (SOFC) to allow fuel and air to be diffused smoothly into the electrode of a fuel cell, and a method for preparing the honeycomb type solid oxide fuel cell. The honeycomb type solid oxide fuel cell comprises an electrode channel; and a current collector adhered to the electrode, wherein the inside of the electrode channel adhered with the current collector is charged with a first material whose density decreases in case of phase change, a second material having a coefficient of thermal expansion larger than that of the material of an electrode support, or their mixture, as a material capable of forming an oxide under the each electrode atmosphere.
Abstract:
본 발명에서는, 니켈-알루미늄 합금 분말로 제작된 시트가 열처리 없이 전지에 직접 장착된 것이고, 상기 전지의 전처리 과정에서 인-시츄로 니켈-알루미늄 합금이 소결된 것을 특징으로 하는 용융탄산염 연료 전지용 니켈-알루미늄 합금 연료극 및 그 제조방법을 제공한다. 본 발명에 따르면 용융탄산염 연료전지용 니켈-알루미늄 합금 연료극의 제조시, 반응 활성을 그대로 유지하면서도, 추가적인 열처리를 하지 않음에 따라 연료극 제조 공정을 단순화할 수 있고, 제조 작업이 간단하며, 경제적이고, 대형화 및 대량 생산이 용이해진다. 니켈알루미늄합금분말, 용융탄산염연료전지, 소결, 불활성기체, 산화
Abstract:
본 발명에서는 정전류 모드로 작동하는 일렉트로닉 로드 장치에 있어서, 정전류 모드 회로가 연산증폭기, 상기 연산증폭기의 (+) 단자에 연결되는 기준전압원, 상기 연산증폭기의 (-) 단자에 연결되는 검출저항, 및 측정 대상 셀이 전기적으로 연결되는 입력전압부를 포함하되, 상기 입력전압부에는 복수개의 셀을 병렬적으로 연결하기 위하여 상기 복수개의 셀과 각각 대응하는 복수개의 입력 단자가 구비되고, 상기 입력 단자 사이에 연결되고 상호 병렬적으로 연결되는 복수개의 셀 각각에 대하여 전압을 측정하는 전압계 및 전류를 측정하는 전류계가 구비되며, 상기 기준전압원의 기준전압의 가변에 따라 입력전압부에 정전류가 인가되는 경우 상기 입력전압부 각각의 셀에 대한 전류 및 전압 특성을 동시에 모니터링함으로써 상기 각각의 셀의 성능을 동시에 측정할 수 있는 것을 특징으로 하는 다중 채널 일렉트로닉 로드 장치를 제공한다. 본 발명에 따르면 분할된 복수개의 셀 각각의 전류 및 전압 특성을 다채널을 통하여 동시에 측정할 수 있고 또한 그 측정이 간편하고 효율적이다. 일렉트로닉로드장치, 다중채널, 정전류모드, 전류계, 전압계, 셀
Abstract:
본 발명에서는 EW가 상이한, 즉, 물 흡수능과 이온전도도가 다른 두가지 이상의 퍼플루오리네이티드 설퍼닉 플루오라이드 나피온 전구체 열가소성 수지를 특히 불화탄소계의 테프론 다공성 지지체에 비대칭 또는 불균일하게 함침하여 복합막을 제조한 후, 이를 가수분해하고, 산처리하여, -SO 3 H 형 복합막을 제조함으로써, 자기 가습이 가능하고, 홍수현상을 방지할 수 있고, 막두께의 조절이 가능하고, 제조 공정이 간단하고, 다양한 연료전지의 운전 조건에서도 그 성능을 향상할 수 있으며, 외부가습장치에 따른 부대비용과 부피를 줄이는 것이 가능한, 연료전지용 비대칭 고분자 전해질 복합막, 그 제조 방법, 연료전지용 불균일 고분자 전해질 복합막 및 그 제조 방법을 제공한다. 고체고분자전해질연료전지, 비대칭복합막, 불균일복합막, 나피온전구체수지
Abstract:
본 발명에서는 다공성 알루미늄 지지체 및 상기 다공성 알루미늄 지지체 상에 테이프 캐스팅되는 리튬알루미네이트로 이루어지는 것을 특징으로 하는 융융탄산염 연료전지용 강화 매트릭스를 제공한다. 또한, 본 발명에서는, 융융탄산염 연료전지를 제조하는 방법에 있어서, 다공성 알루미늄 지지체 상에 리튬알루미네이트를 테이프 캐스팅하여 강화 매트릭스를 제조하는 단계(S1); 상기 강화 매트릭스를 이용하여 단전지 또는 스택을 구성하는 단계(S2); 및 상기 단전지 또는 스택을 열처리하여 상기 지지체의 알루미늄을 리튬알루미네이트로 산화시키는 단계(S3)를 포함하는 것을 특징으로 하는 용융탄산염 연료전지의 제조방법을 제공한다. 그리고, 상기 다공성 알루미늄 지지체는 망상 알루미늄 지지체인 것이 바람직하고, 3차원 망목 구조의 알루미늄 지지체인 것이 더욱 바람직하다. 본 발명에 따르면, 용융탄산염 연료전지용 매트릭스를 효과적으로 강화할 수 있을 뿐만 아니라, 제조 작업이 간단하고, 경제적이며, 대량 생산이 용이하다. 특히, 기공율과 기공 크기가 중요한 용융탄산염 연료 전지의 매트릭스 물성을 고려할 때, 기존 매트릭스와 기공율과 기공 크기가 거의 유사하면서도, 강도를 표시하는 꺽임 강도는 최대 10배 이상 증가시킬 수 있다. 나아가, 지지체의 재질이 알루미늄이므로 저렴할 뿐만 아니라, 단전지나 스택의 열처리시 전해질과 반응하여 리튬알루미네이트로 산화되므로 매트릭스의 재질을 같도록 할 수 있어 부식 및 열팽창 계수 차이 등에 의한 강도 저하를 최소화할 수 있다. 용융탄산염연료전지, 강화매트릭스, 다공성, 알루미늄, 망상, 망목구조, 리튬알루미네이트