Abstract:
A method and apparatus is provided for generating a decision value (809) for use in signal acquisition and channel estimation. In a first embodiment a receiver (850) is provided including at least two spatially diverse antennas (600, 601) which can receive different, e.g. consecutive, segments of the same signal, a signal characteristic (e.g., energy) determination stage (840) for processing the different segments to determine the separate energy values for the segments, and an accumulator 1808) for accumulating the energy values so as to form the decision value or statistic (809). Additional embodiments are also provided.
Abstract:
An efficient apparatus for performing frequency conversion from a final IF frequency to a baseband frequency is described. A counter (401) generates two logical signals G1 (402) and G2 (403) which are passed to an exclusive-OR gate (404) and a multiplexer (406). When a control signal (411) is deasserted, multiplexer (406) passes signal G1 to I1 and signal G2 to I2; when control signal (411) is asserted, multiplexer (406) passes binary signal G1 to I2 (410) and signal G2 to I1 (407). Similarly, multiplexer (405) swaps its input real and imaginary samples when the output of exclusive-OR gate (404) is asserted; otherwise, it performs no operation on its input samples. Signals I1 (407) and I2 (410) are used to control arithmetic inverters (408) and (409) respectively. When the controlling signal for either inverter is asserted, the inverter performs arithmetic inversion, otherwise it performs no operation.
Abstract:
An efficient apparatus for performing frequency conversion from a final IF frequency to a baseband frequency is described. A counter (401) generates two logical signals G1 (402) and G2 (403) which are passed to an exclusive-OR gate (404) and a multiplexer (406). When a control signal (411) is deasserted, multiplexer (406) passes signal G1 to I1 and signal G2 to I2; when control signal (411) is asserted, multiplexer (406) passes binary signal G1 to I2 (410) and signal G2 to I1 (407). Similarly, multiplexer (405) swaps its input real and imaginary samples when the output of exclusive-OR gate (404) is asserted; otherwise, it performs no operation on its input samples. Signals I1 (407) and I2 (410) are used to control arithmetic inverters (408) and (409) respectively. When the controlling signal for either inverter is asserted, the inverter performs arithmetic inversion, otherwise it performs no operation.
Abstract:
A wireless communication infrastructure entity including a transceiver coupled to a controller configured to generate parity bits based on scheduling grant information and to encode the parity bits based on additional scheduling grant information not used to generate the parity bits, wherein the encoded parity bits combined with the scheduling grant information. The additional scheduling grant information may be transport block size or redundancy version information.
Abstract:
A mobile device estimates a data symbol from a received signal by using one or more interference cancellation algorithms. For one interference cancellation algorithm, the mobile device calculates (302) a Channel State Information (CSI) of an interfering sector and calculates (304) a CSI of a serving sector at a different time. The mobile device then determines (310) a correction factor to the CSI of the interfering sector by, for example, estimating a Doppler speed and a time difference between a first time interval like a preamble symbol and a second time interval like any symbol of interest in the data zone. Using the correction factor, the mobile device updates outdated interference information. The mobile device can cancel interference in the received signal distorted by co-channel interference by using the updated interference information. Also, the mobile device can be configured to combine results of multiple interference cancellation algorithms based on the applicability of the individual interference cancellation algorithms in particular scenarios.
Abstract:
A method in a wireless communication device including receiving (410) a composite control channel including at least two control channel elements, each control channel element only contains radio resource assignment information, for example, a codeword, exclusively addressed to a single wireless communication entity. The device combines (420) at least two of the control channel elements, and decodes (430) the combined control channel elements.
Abstract:
A method (400, 500) and apparatus for synchronization for a wireless communication device (300) using multiple synchronization channels. An initial cell search can be performed (420) by the wireless communication device (300). During the initial cell search, a primary synchronization symbol can be acquired (430) only on a center synchronization channel of a plurality of synchronization channels. The plurality of synchronization channels can include the center synchronization channel and a plurality of secondary synchronization channels. The primary synchronization symbol can be associated with the plurality of secondary synchronization channels. A frequency translation can be executed (460) to change a receive channel to acquire one of the secondary synchronization channels.
Abstract:
Disclose is a synchronized wireless communication network (100) operating in single frequency network mode comprising a first base station (502) broadcasting, on a first channel, broadcast data and a common sequence (508) that is generated from a first channel identifier, and wherein the first base station transmits data on a common control channel. A second base station (510), adjacent to the first base station and synchronized with the first base station, the second base station simultaneously broadcasting on the first channel the broadcast data and the common sequence, and wherein the second base station transmits data on a common control channel.
Abstract:
A method and apparatus is provided for transmitting an orthogonal frequency domain multiple access (OFDMA) signal including a synchronization channel signal transmitted within a localized portion of a bandwidth of the OFDMA signal (818), the synchronization channel signal having predetermined time domain symmetry within the localized portion of the bandwidth (816) and including information for providing at least partial cell identification information (812). The synchronization channel signal enables an initial acquisition and cell search method with low computational load which provides OFDMA symbol timing detection and frequency error detection (1112) and frame boundary detection and cell specific information detection (1114) in an OFDMA system supporting multiple system bandwidths, both synchronized and un-synchronized systems, a large cell index and an OFDMA symbol structure with both short and long cyclic prefix length.
Abstract:
A wireless communication entity schedulable in a -wireless communication network, including a controller (603) communicably coupled to a power amplifier (608) wherein the controller varies a maximum transmit power of the wireless communication entity based on the radio resource assignment information receiver by the radio receiver.