Abstract:
A blood pump with an integrated flow sensor is provided. The blood pump may include an implantable pump for pumping blood having a housing, a flow path extending within the housing and at least one movable element within the housing for impelling blood along the flow path and a sensor for measuring the flow rate of blood through the pump. According to one embodiment, the sensor may be mounted to the housing of the pump. In accordance with a further embodiment, the housing may have an exterior surface defining a cavity, and the sensor may be located within the cavity.
Abstract:
The present invention relates to a rotary blood pump with a double pivot contact bearing system with an operating range between about 50 mL/min and about 1500 mL/min. The rotary blood pump is part of a blood pump system that includes blood conduit(s), a control system with optional sensors, and a power source. Embodiments of the present invention may include elements such as wear resistant bearing materials, a rotor back plate for magnetic attraction of the rotor to reduce bearing pivot bearing forces and wear, a rotor size and shape and a bearing gap that combine to create a hydrodynamic bearing effect and reduce bearing pivot bearing forces and wear, improved intravascular conduits with increased resistance to thrombosis, conduit insertion site cuffs to resist infection, and conduit side ports amenable to the easy insertion of guidewire and catheter-based medical devices.
Abstract:
The disclosure relates to a pump for implantation into a vessel or a heart, with the pump being introduced in a first state into the vessel or heart in order then be functionally changed over to a second state in the vessel or in the heart, having a drive part and a delivery part, where the drive part is not functional in the first state and becomes functional as a result of the changeover to the second state, wherein the drive part has an electric motor, where the electric motor is embodied as a wet rotor, and where, in the first state, the rotor of the electric motor and the stator of the electric motor are arranged so as to be separate from one another, and where the rotor of the electric motor is moved into the stator of the electric motor in the second state, where the rotor can drive the delivery part in the second state.
Abstract:
A molded interconnect device can carry a Hall sensor for transducing a position of a rotor of the implantable blood pump. The molded interconnect device includes one or more integrated electronic circuit traces configured to electrically connect the hall sensor with a printed circuit board of the implantable blood pump, and the molded interconnect device is configured to be mounted to the printed circuit board.
Abstract:
A fluid pump device changeable in diameter is provided. The device has a pump housing which is changeable in diameter and with a rotor which is changeable in diameter. The device has at least one delivery element for fluid, as well as a drive shaft on which the rotor is rotatably mounted. A bearing arrangement is arranged on the drive shaft or its extension, at the distal end of the drive shaft behind the rotor seen from the proximal end of the drive shaft. The bearing arrangement has struts, which elastically brace between a hub of the bearing arrangement and the pump housing.
Abstract:
Various “contactless” bearing mechanisms including hydrodynamic, hydrostatic, and magnetic bearings are provided for a rotary pump as alternatives to mechanical contact bearings. These design features may be combined. In one embodiment, the pump apparatus includes a rotor having a bore, a ring-shaped upper rotor bearing magnet, and a ring-shaped lower rotor bearing magnet. The bearing magnets are concentric with the bore. The lack of mechanical contact bearings enables longer life pump operation and less damage to working fluids such as blood.
Abstract:
The present invention provides a rotary blood pump with both an attractive magnetic axial bearing and a hydrodynamic bearing. In one embodiment according to the present invention, a rotary pump includes an impeller assembly supported within a pump housing assembly by a magnetic axial bearing and a hydrodynamic bearing. The magnetic axial bearing includes at least two magnets oriented to attract each other. One magnet is positioned in the spindle of the pump housing while the other is disposed within the rotor assembly, proximate to the spindle. In this respect, the two magnets create an attractive axial force that at least partially maintains the relative axial position of the rotor assembly. The hydrodynamic bearing is formed between sloping surfaces that form tight clearances below the rotor assembly.
Abstract:
A system and a method for starting a rotor of an implantable blood pump are described. For example, a blood pump system includes a rotary motor having a stator and a rotor. The rotor has permanent magnetic poles for magnetic levitation of the rotor, and the stator has a plurality of pole pieces arranged circumferentially at intervals. The blood pump system includes a controller configured to control a start phase of the rotor, wherein the start phase is prior to the rotor being positioned in a predefined geometric volume for pumping blood and wherein the start phase includes performing a rotation of the rotor by an angle larger than an angle corresponding to a quarter of an angular distance between two neighboring magnetic poles of the rotor.
Abstract:
A system and a method for starting a rotor of an implantable blood pump are described. For example, a blood pump system includes a rotary motor having a stator and a rotor. The rotor has permanent magnetic poles for magnetic levitation of the rotor, and the stator has a plurality of pole pieces arranged circumferentially at intervals. The blood pump system includes a controller configured to control a start phase of the rotor, wherein the start phase is prior to the rotor being positioned in a predefined geometric volume for pumping blood and wherein the start phase includes performing a rotation of the rotor by an angle larger than an angle corresponding to a quarter of an angular distance between two neighboring magnetic poles of the rotor.
Abstract:
A centrifugal pump (10) includes a housing (26), an impeller (28) that is rotatably disposed inside the housing (26), a shaft (62) that is provided at a center rotational axis of the impeller (28), and bearings (70) that pivotally support the shaft ends (66). At least one of the shaft ends (66) has surface roughness Ra equal to or less than 0.21 μm and/or surface roughness Ry equal to or less than 1.49 μm.