Abstract:
Methods and systems are provided for converting methane in a feed stream to acetylene. The method includes processing the acetylene to form a hydrocarbon stream having vinyl chloride. The hydrocarbon stream is introduced into a supersonic reactor and pyrolyzed to convert at least a portion of the methane to acetylene. The reactor effluent stream is be treated to convert acetylene to other hydrocarbon processes. The method according to certain aspects includes controlling the level of carbon monoxide in the hydrocarbon stream to limit downstream side reactions in the downstream processing units.
Abstract:
A method and apparatus used to rapidly reticulate closed-cell or partially closed-cell foam materials. The method involves subjecting the foam material to an energy impulse in the form of a shock wave. The shock wave is generated using a shock wave tube generator in the same gaseous environment in which the foam material is immersed, preferentially air at room conditions. The energy impulse acts to destroy the membranes closing the foam materials cells without disintegrating the frame's structure. In particular, the method rapidly improves the acoustic and filtering behaviour of the foam material.
Abstract:
The present invention refers to a nanomaterial synthesis process from the decomposition and subsequent reaction among common and economical insoluble precursors, or precursors which hydrolyze in contact with water, which are incorporated in the internal phase of an emulsion. These insoluble precursors are introduced in the internal phase of an emulsion, then being subject to decomposition and subsequent reaction in the solid state, under shockwave effect during the detonation of the emulsion, the nanomaterial with the intended structure being in the end obtained. The process of the present invention therefore allows obtaining a wide range of nanomaterial as composites or binary, ternary structures or higher structures, with small-sized homogenous primary particles, applicable to several technological fields.
Abstract:
The present invention refers to a continuous process for in secco nanomaterial synthesis from the emulsification and detonation of an emulsion. The said process combines the simultaneous emulsification and detonation operations of the emulsion, thus assuring a production yield superior to 100 kg/h. When guaranteeing that the sensitization of the emulsion occurs mainly upon its feeding into the reactor, it is possible to avoid the accumulation of any class-1 substances along the entire synthesis process, thus turning it into an intrinsically safe process. Afterwards, dry collection of the nanomaterial avoids the production of liquid effluents, which are very difficult to process. Given that there's neither accumulation nor resort to explosive substances along the respective stages, the process of the present invention becomes a safe way of obtaining nanomaterial, thus allowing it to be implemented in areas wherein processes with hazardous substance aid are not allowed.
Abstract:
The invention relates to carbon chemistry and is embodied in the form of a diamond-carbon material, in which carbon is contained in the form a diamond cubic modification and in a roentgen-amorphous phase at a ratio of (40-80):(60-20) in terms of a carbon mass, respectively, wherein the inventive material comprises 89.1-95.2 mass % carbon, 1.2-5.0 mass % nitrogen, 0.1-4.7 mass % oxygen and 0.1-1.5 mass % fire-resisting impurities. The inventive method for producing said material consisting in detonating, in a closed space of a carbon-inert gas medium, a carbon-containing oxygen-deficient explosive material, which is placed in a condensed phase envelop containing a reducing agent at a quantitative ratio between said reducing agent mass in the condensed phase and the mass of the used carbon-containing explosive material equal to or greater than 0.01:1. A method for processing the samples of diamond-carbon material produced by means of a detonation synthesis for examining the elemental composition thereof is also disclosed.
Abstract:
A process is provided for conversion of a feedstock, in particular a hydrocarbon feedstock such as methane or natural gas, in which a reactive mixture containing the feedstock is prepared and fed to a reaction zone. A reaction is initiated in the reactive mixture within the reaction zone so as to generate a conversion wave of increased temperature and pressure. The conversion wave is allowed to pass through the reaction zone from where converted feedstock is recovered. An apparatus for carrying out the process is also provided. The apparatus comprises a tubular reactor (4) having a reaction portion (6) and a driver portion (8) separated from the reaction portion (6) by a membrane in the form of a rupture disk (10). The driver portion (8) is further provided with an ignition source in the form of a spark plug (42). The process operates with a high conversion and selectivity to desirable products and is particularly suitable for the conversion of methane to carbon monoxide and hydrogen.
Abstract:
The present invention provides a method/device (1) for enhancing a chemical reaction including PCR and ELISA by utilizing electromagnetic or mechanical energy. Such method/device (1) can also be used for increasing the rate at which a group of molecules reaches a different molecular configuration from initial configuration, thereby increasing binding and reacting of the molecules.