Abstract:
Method and System of lubricating at least one moving part with a medium. The medium includes a dissolved mixture of lubricant and compressed gas. The amount of lubricant and compressed gas may be controlled in forming the dissolved mixture in response to input conditions. A user and/or external factors may be used to determine the input conditions. In response to the input conditions the amount of lubricant and compressed gas is delivered to the moving part that is housed in a pressurized chamber. The properties of the dissolved mixture can be adjusted, whereby the properties may include, but are not limited to, the following: viscosity, temperature, and thermal conductivity. This adjustment to the gas may be accomplished, for example, by releasing gas from the pressurized chamber in an amount to adjust the properties. In a further approach, lubricant may be scavenged from the pressurized chamber by returning surplus lubricant to its original source or other designated location.
Abstract:
A method for producing and operating for the first time a transmission unit with a lubricant based on water comprises the following steps: a mixture of vaporizable liquid, a comminuted solid lubricant and a preservative (22) are applied (21) to the finished rotary parts (20) and then dried (23), whereby a coating forms on them. The rotary parts with the coating are fitted into the casing of the transmission unit and the assembled transmission unit is filled with a cooling liquid (25), which is primarily water. The transmission unit is put into operation for the first time (27), the lubricant for further operation only being formed by the abrasion of the rotary parts and distribution of the abraded matter in the cooling liquid. The transmission unit is then operationally ready (28). Furthermore, a lubricant produced by this method is described.
Abstract:
PCT No. PCT/SE96/01701 Sec. 371 Date Oct. 28, 1998 Sec. 102(e) Date Oct. 28, 1998 PCT Filed Dec. 19, 1996 PCT Pub. No. WO97/25393 PCT Pub. Date Jul. 17, 1997The present invention relates to a method for mechanical working of metal and other solid materials with a cooling and lubricating composition containing a major portion of carbon dioxide and a minor portion of a polar lubricant containing at least one polar organic compound with at least one oxygen atom. The polar groups may be selected from the group consisting of the ether, hydroxyl, carboxyl, ester and amido group or mixtures thereof.
Abstract:
The invention concerns a composition for preparing metal products designed to be shaped by at least one mechanical process of plastic deformation such as wire drawing, rolling, calendering, forging, swaging and the like, without notable shrinkage of substance. The invention is characterised in that it comprises a film-forming binder, at least an additive reactive with the metal, at least a lubricating additive and at least an anticorrosive additive. The invention also concerns a method for preparing said metal products using the claimed composition.
Abstract:
A solid lubricant composition comprises (I) 30 to 70 parts by weight of graphite, (II) 70 to 30 parts by weight of a mixture of at least two components selected from alkali molybdate, alkali or alkaline earth sulphate and alkali phosphate, the ratio of the two individual ingredients being in the range of from 0.05/1 to 20/1. Compositions give improved load-bearing capacity and allows settling of friction coefficient.
Abstract:
According to the method of the invention, first a paste is produced from a plastics dispersion and fillers in order to form the plastics sliding layer. This paste is free from organic solvents and is applied to a sintered porous metal layer. The resultant multi-layer material is then sintered. Since organic solvents are not used, the risks to health and the risk of fire are considerably reduced. Furthermore, the composite materials produced according to the invention have exceptional resistance to cavitation. In addition to conventional fields of application relative to lubrication-free articles, such as bearings, these composite materials can therefore also be used in gear pumps and shock absorbers.
Abstract:
A dry film, low coefficient of friction lubricant for titanium pieces is prepared by mixing together solid lubricant particles, poly(tetrafluoroethylene), a suspending agent, and a curable resin in an evaporable carrier. The mixture is applied to titanium or titanium alloy surfaces that contact each other in service. The carrier is evaporated during a subsequent thermal cure, leaving a lubricating film on the surfaces.