Abstract:
A reinforcing steel cord (10) for rubber products, such as steel belted radial tires or conveyor belts, is disclosed. This steel cord (10) is improved in rubber penetration and ageing adhesive force relative to the rubber material. The steel cord (10) is formed by twisting a plurality of brass coated external element wires (12) around a flat and spirally twisted core (11), with the twisted direction of the core (11) being the same as or opposite to that of the resulting steel cord (10). In the steel cord (10), the pitch of the twisted core (11) is set to allow the core (11) to be twisted 0.2 to 2 times within the pitch of the cord (10), thus preferably forming sufficient interspaces between the core (11) and the external wires (12) in addition to the interspaces between the external wires (12). Since the rubber material is completely filled in the steel cord (10) due to such interspaces, the steel cord (10) is remarkably improved in buckling fatigue resistance, rubber penetration, air permeability, rubber adhesive force, ageing adhesive force relative to rubber, protection of brass coated surfaces of wires (12), and workability during a process of producing rubber products. The steel cords (10) of this invention are most preferably used as a reinforcing material for steel belted radial tires.
Abstract:
A reinforcing steel cord for rubber products, such as steel belted radial tires or conveyor belts, is disclosed. This steel cord is improved in rubber penetration and ageing adhesive force relative to the rubber material. The steel cord is formed by twisting a plurality of brass coated external element wires around a flat and spirally twisted core, with the twisted direction of the core being the same as or opposite to that of the resulting steel cord. In the steel cord, the pitch of the twisted core is set to allow the core to be twisted 0.2 to 2 times within the pitch of the cord, thus preferably forming sufficient interspaces between the core and the external wires in addition to the interspaces between the external wires. Since the rubber material is completely filled in the steel cord due to such interspaces, the steel cord is remarkably improved in buckling fatigue resistance, rubber penetration, air permeability, rubber adhesive force, ageing adhesive force relative to rubber, protection of brass coated surfaces of wires, and workability during a process of producing rubber products. The steel cords of this invention are most preferably used as a reinforcing material for steel belted radial tires.
Abstract:
The proposal is for a wire filament for reinforcing rubber or plastic items, especially pneumatic tyres, which is spiral in shape and exhibits no residual elastic torsional stresses. A wire filament (8) of the invention is produced by twisting drawn straight wire filaments (2) in the plastic deformation region followed by reversal, two wire filaments being put together and secured at the latest before reversal. Advantageously, at least two wire filaments (2) are brought together by means of a perforated plate (30), twisted around each other in a false twister (20) and plastically deformed and then reversed in a further false twister (40).
Abstract:
There is disclosed a method of stranding together a plurality of strands (7) of sectorial cross-section around an optical fiber unit (2) which serves as a central wire material. First, a rigid type stranding machine is used to impart spiral twist to each strand (7). Subsequently, the twisted strand (7) is heat-treated to remove its strains. These strands are then fed to a planetary type stranding machine which provides planetary motion in which they make orbital rotation around the optical fiber unit (2) without making own-axis rotation, whereby they are stranded together on the optical fiber unit (2).
Abstract:
Le procédé permet la fabrication d'au moins des premier et deuxième assemblages (26, 28) de M1 éléments filaires et M2 éléments filaires, au moins l'un des premier et deuxième assemblages (26, 28) comprenant plusieurs des éléments filaires (14) enroulés ensemble en hélice. Le procédé comprend une étape d'assemblage de M éléments filaires (14) ensemble en une couche des M éléments filaires (14) autour d'un noyau transitoire (16) pour former un assemblage transitoire (22), et une étape de fractionnement de l'assemblage transitoire (22) en au moins les premier et deuxième assemblages (26, 28) de M1 éléments filaires et M2 éléments filaires.
Abstract:
A strata support system that provides support and balance to a rock mass and reacts to movement of the rock mass. The strata support system includes a borehole that is drilled into a surface of the rock mass. A resin is disposed in the borehole to secure a cable within the borehole. An anchor cable bolt assembly having a plurality of strands that are twisted together to form the cable is inserted into the borehole. At least one of the plurality of strands includes an interrupted outer surface that is defined by a plurality of spaced indentations. The plurality of spaced indentations are formed along the length of the strand and provide for a plurality of surface contours to enhance engagement of the anchor cable bolt with the resin.
Abstract:
Изобретение относится к канатному производству и может быть использовано для армирования монолитных строений и других изделий из бетона. Задача заключается в создании самовыпрямляющегося арматурного элемента. Арматурный канат содержит центральную проволоку и навитые вокруг нее по спирали повивочные проволоки с периодическим профилем. На наружный участок поверхности повивочных проволок нанесен периодический профиль, выполненный в виде наклонных выступов над образующей обжатой поверхности каната. Участки поверхности повивочных проволок, контактирующие с другими проволоками, выполнены в форме спирально расположенных плоских площадок. Канат закрепляют у основания сооружения и в каждом из циклов заливки фиксируют между ранее сформированной частью сооружения и распределительным шаблоном. Канат подают через обводные ролики и направляющую проводку с катушек, расположенных у основания. Перед каждым циклом заливки шаблон отводят на величину формируемого участка. Каждый арматурный элемент является цельным по всей длине сооружения. Соединение перпендикулярных элементов осуществляют втулками или вязальной проволокой.
Abstract:
A steel cord (50) comprises a core layer and an outer layer. The core layer comprises a number of first steel filaments (10) and the outer layer comprises a number of second steel filaments (20). The outer layer is helically twisted around the core layer. The first steel filaments have a twisting pitch greater than 310mm. At least one of the first steel filaments (10) is wavy preformed in one plane. At least one of the second steel filaments (20) is polygonally preformed.
Abstract:
A rope structure comprising a plurality of formed composite strands. Each of the formed composite strands comprises fiber material and matrix material. The fiber material within the matrix material is twisted. The shapes of the plurality of formed composite strands are predetermined to facilitate combination of the plurality of composite strands into the rope structure.