Abstract:
An internal combustion engine (10) comprising an engine frame (12) having a drive shaft (20) rotatably mounted therein and extending outwardly therefrom. A pair of cylinder sleeves (40, 40') are mounted on the engine frame (12) and have their inner ends positioned within the interior of the frame and their outer ends positioned outwardly thereof. A cylinder head (60, 60') is secured to the outer end of each of the sleeves and is separated thereby by means of a heat insulative gasket (70). Each of the cylinder heads (60, 60') has a dome-shaped chamber (62, 62') formed therein which is in communication with a source of combustible fuel. An air inlet conduit (94) is mounted on one end of the engine frame and is in communication with a source of air under pressure such as a blower, super-charger or the like. The air inlet conduit is in communication with an air passageway (100) formed in the engine frame (16) which is in communication with air inlet openings (52, 52') formed in the cylinder sleeves (40, 40'). The cylinder sleeves (40, 40') are provided with exhaust openings (54, 54') formed therein which communicate with an air exhaust passageway (102) formed in the engine frame (16). The exhaust passageway (102) is connected to exhaust conduit (106) or pipe extending from the engine frame (16). A piston (72, 72') is slidably mounted in each of the sleeves (40, 40') and has a dome-shaped head portion (76, 76') which is adapted to be received by the dome-shaped chamber (62, 62') in the cylinder head (60, 60') when the piston is in its top position. In the top position, the small "air space" (118) is present between the walls or sides (78, 78') of the piston head (76, 76') and the walls or sides of the sleeves (64, 64'). The "air space" (118) serves as a means for retarding the absorption of heat into the sides of the piston head (76, 76') and the sides of the cylinder sleeve (40, 40'). In the down position, the "air space" (118) also serves to spread the cooling air into a thin, wide sheet for more efficient cooling of the cylinder head (60, 60') and sleeves (40, 40'). Optional air deflecting fins (84, 86, 84', 86') may be employed on the piston head (76, 76'). The rings (82, 82') of the piston (72, 72') are conventionally lubricated and slide upon the interior wall (52, 52') of the cylinder sleeve (40, 40'). Each of the pistons (72, 72') has a roller (88, 88') mounted on the skin portion (74, 74') thereof which rolls upon a cam (32) mounted on a rotor plate (30) which is secured to the drive shaft (20) for rotation therewith. A return roller (92, 92') is also operatively mounted on the skin portion (74, 74') of the piston (72, 72') for engagement with a return cam (36) which is mounted on the drive shaft (30) for rotation therewith.
Abstract:
A rotary compressor includes a compressing unit including: an annular cylinder; an end plate having a bearing unit, and closing an end portion of the cylinder; an annular piston fitted in a rotation shaft in the bearing unit, performing an orbital motion inside the cylinder, and forming an operation chamber with the cylinder inner wall; and a vane protruding from a groove of the cylinder to the operation chamber, coming into contact with the annular piston, and partitioning the operation chamber into an inlet chamber and a compression chamber. The vane is formed of steel and has a diamond-like carbon layer on a sliding surface with respect to the annular piston. The annular piston is formed of Ni—Cr—Mo cast iron to which 0.15 wt % to 0.45 wt % of phosphorus is added, or formed of cast iron or steel, and has an iron nitride layer on its outer circumferential surface.
Abstract:
A liquid ring pump is provided that includes an annular housing having an inner surface forming a housing cavity. The annular housing is filled with an operating fluid during operation of the pump. The operating fluid forms an eccentric liquid ring in the annular housing during operation of the pump. A rotor is disposed in the housing cavity and includes a plurality of rotor blades. A shaft extends into the annular housing into the housing cavity. The plurality of rotor blades extend radially outward from the shaft toward the inner surface of the annular housing. A liner formed from a corrosion resistant material is disposed substantially flush with at least a portion of the annular housing inner surface opposite a plurality of rotor blade ends.
Abstract:
Oilfield equipment is provided that includes a base material less subject to abrasion, corrosion, erosion and/or wet fatigue than conventional oilfield equipment materials such as carbon steel, and a reinforcing composite material for adding stress resistance and reduced weight to the oilfield equipment.
Abstract:
A fluid pump includes a motor, an inner gear rotor and an outer gear rotor. The inner gear rotor is driven for rotation about an axis by the motor and has a plurality of outwardly extending teeth. The outer gear rotor has a plurality of inwardly extending teeth that are engaged by the teeth of the inner gear rotor so that the outer gear rotor is driven for rotation about a second axis when the inner gear rotor rotates. At least one of the inner gear rotor and the outer gear rotor is formed from a plastic material.
Abstract:
A high pressure pump for use in the injection of liquid chemicals into subsea oil or gas wells, and intended to be positioned in the subsea environment adjacent to the wellhead, comprises a piezoelectric actuator (19) for reciprocating a plunger (22) which acts to compress and expand the effective volume of a pumping chamber (29) having a valved inlet (15) connected to a source of the liquid and a valved outlet (16) to lead the liquid to the well. The device has a minimum of moving parts and in particular avoids the need for any rotating parts and attendant high performance bearings and seals.
Abstract:
A high pressure pump for use in the injection of liquid chemicals into subsea oil or gas wells, and intended to be positioned in the subsea environment adjacent to the wellhead, comprises a piezoelectric actuator (19) for reciprocating a plunger (22) which acts to compress and expand the effective volume of a pumping chamber (29) having a valved inlet (15) connected to a source of the liquid and a valved outlet (16) to lead the liquid to the well. The device has a minimum of moving parts and in particular avoids the need for any rotating parts and attendant high performance bearings and seals.
Abstract:
Oilfield equipment is provided that includes a base material less subject to abrasion, corrosion, erosion and/or wet fatigue than conventional oilfield equipment materials such as carbon steel, and a reinforcing composite material for adding stress resistance and reduced weight to the oilfield equipment.
Abstract:
A compressor having a compression element with a cylinder in which a compression space is constituted, a suction port and a discharge port which communicate with the compression space in the cylinder, a support member which closes an opening on the cylinder and a rotary shaft which is rotatably supported by a main bearing as a bearing formed on the support member. A compression member, whose one surface crosses an axial direction of the rotary shaft is inclined continuously between a top dead center and a bottom dead center and is disposed in the cylinder to be rotated by the rotary shaft, compresses a fluid sucked from the suction port to discharge the fluid via the discharge port. A vane which is disposed between the suction port and the discharge port to abut on one surface of the compression member partitions the compression space in the cylinder into a low pressure chamber and high pressure chamber. A shaft seal which is disposed on an end portion of the main bearing, on a side opposite to the compression member, abuts on the rotary shaft.
Abstract:
A method of producing a piston that involves providing a piston body formed of a first material, the piston body having a cylindrical portion having a diameter, a rounded end, and a neck connecting the rounded end to the cylindrical portion and having a diameter less than the diameter of the piston body, cladding a portion of the cylindrical portion with a first tool steel layer, cladding a portion of the rounded end with a second tool steel layer spaced from the first tool steel layer, heat treating the piston body and nitriding the first and second tool steel layers. Also a piston (10) having first (18) and second (22) nitrided, tool steel clad portions.