Abstract:
A leakage seal for use in a gas path between two relatively rotatable members of a gas turbine comprises a foil layer and a cloth layer. The foil layer has two expansive surfaces, a single one of which is covered by the cloth layer. The leakage seal has a proximal end, a distal end, and a generally flat region between the proximal and distal ends. The proximal end is attached to an associated one of the turbine members. The distal end diverges from the generally flat region so as to define a curved hook, along which the cloth portion is wrapped over the foil layer, when the distal end is viewed in cross-section.
Abstract:
A guide vane for a gas turbine aircraft engine includes an aerodynamic shell for turning a flow of working fluid and an internal spar spaced from the aerodynamic shell by an air gap and reinforced by stiffeners.
Abstract:
A leakage seal for use in a gas path between two relatively rotatable members of a gas turbine comprises a foil layer and a cloth layer. The foil layer has two expansive surfaces, a single one of which is covered by the cloth layer. The leakage seal has a proximal end, a distal end, and a generally flat region between the proximal and distal ends. The proximal end is attached to an associated one of the turbine members. The distal end diverges from the generally flat region so as to define a curved hook, along which the cloth portion is wrapped over the foil layer, when the distal end is viewed in cross-section.
Abstract:
A reaction control turbine blade is formed by applying a reaction control material to the surface of an Ni-base superalloy before applying aluminum diffusion coating to the Ni-base superalloy. The reaction control material is Co, Cr or Ru, or an alloy of which main component is selected from a group consisting of Co, Cr, Ru. Thereby, it is possible to enhance the oxidation resistance of the Ni-base superalloy, and to control formation of a secondary reaction zone.
Abstract:
A rotating blade body is provided that can restrain vibrations of rotating blades effectively. The rotating blade body comprises rotor disc, a plurality of rotating blades being assembled so as to extend from the outer circumference of the rotor disc in a radial pattern, and sealing pins extending along the direction of the rotating shaft in the gaps between the platforms of the rotating blades being adjacent in circumferential direction. The sealing pins have a through-hole made therein, penetrating axially from one end surface to the other end surface.
Abstract:
A method of providing turbulation on the inner surface of a passage hole (e.g., a turbine cooling hole) is described. The turbulation is first applied to a substrate which can eventually be inserted into the passage hole. The substrate is often a bar or tube, formed of a sacrificial material. After the turbulation is applied to the substrate, the substrate is inserted into the passage hole. The turbulation material is then fused to the inner surface, using a conventional heating technique. The sacrificial substrate can then be removed from the hole by various techniques. Related articles are also described.
Abstract:
The invention relates to a ceramic-based bushing for mounting in a turbomachine casing to provide a smooth bearing for a pivot of a variable-pitch vane. The bushing is constituted by a metal jacket and a ceramic ring secured to the inside wall of said jacket by brazing. The invention also provides a turbomachine compressor having variable-pitch stator vanes with pivots mounted in the casing by means of such bushings.
Abstract:
The invention provides a high-temperature component for a turbomachine, in particular for a blade or vane having a main blade or vane part and a blade or vane root, the high-temperature component at least partially comprising, as base material, a porous material which is filled with a viscous filler and is surrounded by a solid layer.
Abstract:
A method of providing turbulation on the inner surface of a passage hole (e.g., a turbine cooling hole) is described. The turbulation is first applied to a substrate which can eventually be inserted into the passage hole. The substrate is often a bar or tube, formed of a sacrificial material. After the turbulation is applied to the substrate, the substrate is inserted into the passage hole. The turbulation material is then fused to the inner surface, using a conventional heating technique. The sacrificial substrate can then be removed from the hole by various techniques. Related articles are also described.