Abstract:
Transillumination uses light to image tissues and organs, specifically the veins within the tissue. Strong ambient light hinders the imaging of veins and often, transillumination must be done in a dark or dim room. To enhance the capabilities of a transilluminator, a light shield is placed over the viewing area of the transilluminator so that turning off or dimming of ambient light is not necessary. For pediatric care, a frustroconical adapter attached to the bottom of the transilluminator. The adapter reduces the size of the viewing area.
Abstract:
A measuring device for immunochromatography test piece comprising an irradiation optical system for irradiating measurement light onto an immunochromatography test piece, and a detection optical system for detecting reflected light from the immunochromatography test piece under irradiation with the measurement light. The irradiation optical system comprises a semiconductor light emitting element, a beam shaping member, a lens, a first baffle portion, a second baffle portion, and a third baffle portion. The beam shaping member shapes light from the semiconductor light emitting element, into a beam of a beam section extending in a direction substantially parallel to a colored line formed on the immunochromatography test piece. The lens focuses the beam from the beam shaping member on the immunochromatography test piece. The first baffle portion removes stray light, which is disposed between the semiconductor light emitting element and the beam shaping member. The second baffle portion removes stray light, which is disposed between the beam shaping member and the lens. The third baffle portion removes stray light, which is disposed between the lens and the immunochromatography test piece.
Abstract:
A miniature readhead for a photometric diagnostic instrument includes a housing of hand-held form factor, configured for receiving reagent sample media therein. The sample media has a plurality of test areas configured to react with, and change color, according to an amount of an analyte in a sample. The holder is sized and shaped for forming an indexed fit with the sample media and includes an array of light sources coupled to the housing, each of the light sources configured to emit light onto a respective one of the test areas. An array of chambers respectively containing an array of light detectors, is configured to enable each of the light detectors to receive diffuse, non-specular reflections of the light from the test areas, while substantially preventing the light detectors from receiving specular reflections of the light.
Abstract:
A multiplexed, absorbance-based electrophoresis system for analyzing multiple samples simultaneously without use of a mask or slit comprising a light source, a planar array of capillary tubes and a detector positioned off-axis with the light source and positioned on-axis with and parallel to the planar array of capillary tubes. Other embodiments include vacuum use attached to the capillary tubes to increase the speed of detection.
Abstract:
A flow cell for transporting fluid in a radiant energy field includes a cell structure having a tube extending therethrough including a radiant energy blocking portion integral therewith. In a particular embodiment, the cell structure includes one or more end caps having a protrusion extending therefrom, wherein the protrusion may be inserted into the tube to create a fluid seal, the end caps including open channels for transporting fluid and radiant energy therethrough, and the tube in the cell structure includes an efficient radiant energy transmission lining that is spaced from the end cap protrusions, thereby forming a gap volume in the flow cell open channel, which gap volume may be calibrated such that radiant energy losses may be standardized in respective flow cells transporting fluids having various indexes of refraction.
Abstract:
Radiant energy is transmitted to a probe element including an interior conical reflecting surface and a fluid sample chamber. Portions of the light which have been transmitted, partially attenuated, or scattered by a fluid sample in the sample chamber are directed by at least a portion of the interior conical reflecting surface to means for collecting the transmitted, partially attenuated, or scattered light. A stilling valve incorporated into the probe element enables elimination of entrained gas bubbles from the chamber.
Abstract:
An apparatus comprising a light source, a lens system, a reticle illuminated by the light source, a housing having a substantially dark viewing chamber and a pearl holder for holding the cultured pearl in the substantially dark viewing chamber, and a reticle device for providing a reticle image observable through the lens system. The substantially dark viewing chamber is optically connected to the light source so as to allow light from the light source to traverse an aperture in the pearl holder to illuminate the pearl. The substantially dark viewing chamber is also optically connected to the lens system. In order to provide maximum contrast between light and darkness in the substantially dark viewing chamber, the housing is arranged to prevent entry of extraneous light into the substantially dark viewing chamber. A preferred method according to the present invention includes the following steps. A pearl is placed in the substantially dark viewing chamber. The pearl is illuminated by irradiating a relatively small portion of a side of the pearl with light from the light source, so that luminescence is stimulated throughout the pearl only when the pearl is a natural pearl, and so that the thickness of the nacre coating is observable through the lens system when the pearl is a cultured pearl. The thickness of the nacre coating of the illuminated pearl is measured by comparison with the reticle image observed through the lens system.
Abstract:
A spectral cover for a reflectance photometer is disclosed in which the spectral cover is designed to cover the readhead area of the reflectance photometer and block the transmission of light in a wavelength range of at least 60 to no more than 200 nanometers centered about the detection wavelength while permitting light of other wavelengths to be transmitted. The invention permits the readhead cover to be permanently or semipermanently positioned on the reflectance photometer. Since a user is able to see through the spectral cover it is possible to position a test device correctly and quickly over the readhead of the reflectance photometer. Signal noise levels due to ambient light are substantially eliminated by the invention.
Abstract:
A reflection meter for measuring the percentage of reflected light from a surface. A light source produces light which strikes the surface. The surface reflects the light into a chamber which directs the light to a detector. The detector senses the reflected light and produces a detect signal that represents the light reflected. A microprocessor receives the detect signal and calculates a percentage of light reflected from the surface which is shown on a display. An absorbing receiver engage the surface and absorbs any light that is transmitted through the surface.
Abstract:
A reference system utilizes pulsed arc light excitation which excitation pulses are directed onto a flow cell containing a fluorescent dye. Fluorescent light emitted from the dye is guided to a photomultiplier tube which converts it to electrical pulses. A portion of each excitation light pulse is guided by a light pipe onto a PIN diode light detector which converts these light signals to electrical pulses. A LED reference light source is pulsed to generate a plurality of reference light pulses one of which occurs between each excitation pulse. A portion of each of these pulses is guided to each of the two light detectors and two more series of electrical pulses are generated. A microprocessor then reads the four electrical pulses resulting from each pair of light pulses and performs a computation on the resulting numbers which indicates the relative concentration of the target concentration being assayed. An optical system masks the excitation light pulses and the emitted light pulses to minimize the amount of scattered excitation light that gets into the emitted light optical channel and spatially integrates the images of the arc yielding the excitation light to control the stability of the image projected onto the photomultiplier tube. The light pipe and an output lens spatially integrates the image of the excitation light mask and focuses this light on the PIN diode so that the dancing image of the arc does not modulate with the variations of the PIN diode cathode and destabilize its output signal.