Abstract:
The invention discloses a remote control system for electric devices, a signal conversion device, and a control method for signal conversion devices. The signal conversion device may control an electric device according to a remote control signal including an identification code and a control command. The signal conversion device may include a wireless receiving module, a control module, and a wireless transmission module. The wireless receiving module may receive the remote control signal. The control module may determine whether the identification code matches a default identification code stored in the signal conversion device, to decide whether to convert the control command to a control signal. The wireless transmission module may transmit the control signal to the electric device such that the electric device operates according to the control signal.
Abstract:
A remote control is powered by multiple batteries connected in series. The remote control includes a voltage comparison circuit configured to compare a midpoint voltage from a node connecting two of the batteries to a reference voltage. The remote control is able to determine if there is a non-uniform drain rate in the batteries based on the comparison.
Abstract:
Methods and systems are provided for enabling wireless control by use of portable power supply systems with embedded communication components. A power supply component, which is operable to store and discharge power, and which may be configured for use in a first device to supply power thereto in portable manner, may be configured to determine data associated with the power supply component. The data may comprise information relating to one or more conditions associated with use of power stored in the power supply component, in conjunction with operation of the first device. The power supply component may comprise a communication element, for wirelessly communicating messages to a second device that is physically separate from the first device, to control at least part of operations of the second device. Controlling operations of the second device may comprise activating or deactivating the second device based on use of power by the first device.
Abstract:
Diagnostic system including a sensor device with a sensor for generating signals corresponding to a first operational condition, a control device with a timer and function for performance of measurements, and a signal transmission device. The system includes a device for determination of a second operational condition of the system component and configured where the sensor value of the signal transmission device corresponding to the first operational condition is furnished when the sensor value corresponding to a second operational condition of the transmission mechanism is higher or lower than a comparative value, and housing component of a lubricant container and a closure device for sealing an opening of the housing component from a lubricant present in the operational use thereof in an internal space thereof, having arranged therein: at least one sensor device including at least one sensor for determining the water content in the lubricant.
Abstract:
A universal remote control device includes a housing, an IR signal generator positioned in or on the housing, a user interface positioned in or on the housing, a control unit positioned in the housing and connected with the IR signal generator and the user interface, a rechargeable battery positioned in the housing and connected with the control unit, and first and second power contacts each connected with the rechargeable battery. Each power contact includes an external contact surface that is parallel, at least flush with, or outwardly offset from an unrecessed flat external surface of the housing.
Abstract:
A control device, operation mode altering method thereof, control method thereof and battery power warning method thereof is provided. The control device comprises a housing structure, a first touch sensing apparatus and a second touch sensing apparatus. The housing structure comprises a surface. The first touch sensing apparatus is disposed in the housing structure and provides a first touch sensing surface for sensing a moving status of a first touching object. The second touch sensing apparatus is disposed in the housing structure and provides a second touch sensing surface for sensing a moving status of a second touching object. The first touch sensing surface and the second touch sensing surface are disposed at different areas of the surface.
Abstract:
An apparatus, method, and computer program product for: receiving an indication of presence of a wireless charging field, detecting a change of orientation of a device during the presence of the wireless charging field and controlling an application parameter based on the detected change.
Abstract:
Diagnostic system including a sensor device with a sensor for generating signals corresponding to a first operational condition, a control device with a timer and function for performance of measurements, and a signal transmission device. The system includes a device for determination of a second operational condition of the system component and configured where the sensor value of the signal transmission device corresponding to the first operational condition is furnished when the sensor value corresponding to a second operational condition of the transmission mechanism is higher or lower than a comparative value, and housing component of a lubricant container and in particular closure device for sealing an opening of such a housing component from a lubricant which is present in the operational use thereof in an internal space thereof, having arranged therein: at least one sensor device comprising at least one sensor for determining the water content in the lubricant.
Abstract:
The invention discloses a remote control system for electric devices, a signal conversion device, and a control method for signal conversion devices. The signal conversion device may control an electric device according to a remote control signal including an identification code and a control command. The signal conversion device may include a wireless receiving module, a control module, and a wireless transmission module. The wireless receiving module may receive the remote control signal. The control module may determine whether the identification code matches a default identification code stored in the signal conversion device, to decide whether to convert the control command to a control signal. The wireless transmission module may transmit the control signal to the electric device such that the electric device operates according to the control signal.
Abstract:
The invention relates to a system comprising at least one orthopedic device having at least one joint (4) and a resistance device associated with the respective joint (4), a control device and an actuator being associated with said resistance device. The joint can be moved or the resistance can be adjusted against a bending and/or stretching movement via the actuator. The system further comprises a remote control unit (6) which is coupled to the control device and via which the resistance behavior can be varied, wherein data for the remote control unit (6) are stored in the orthopedic device, the remote control (6) can be configured with said data and the data are transmitted via a pairing process to the remote control unit (6).