Abstract:
A body weight support system includes a support track configured to movably suspend a trolley therefrom. A power rail of the system is coupled to the support track and is in electrical contact with the trolley. A switch included in the system has a support track portion and a power rail portion. The switch is configured to transition between a first configuration, in which a first portion of the support track and the support track portion of the switch define a first path, and a second configuration, in which a second portion of the support track and the support track portion of the switch define a second path. The trolley is configured to receive a flow of electric power from at least one of the power rail or the power rail portion of the switch that is operable to move the trolley along the first path or the second path.
Abstract:
An apparatus includes a plate configured to support a user standing thereon, a set of fluid chambers configured to support at least a portion of the plate, and an electronic assembly in communication with at least one sensor. The sensor configured to sense a first operating condition associated with at least one of the set of fluid chambers and the plate. The electronic assembly is configured to define a second operating condition based at least in part on a difference between the first operating condition and a predetermined operating condition. The electronic assembly is configured to send (1) a first signal operable to transition each fluid chamber from a first configuration, associated with the first operating condition, to a second configuration, associated with the second operating condition, and (2) a second signal operable to graphically represent data associated with the second operating condition on a display of an electronic device.
Abstract:
An apparatus includes a frame, a sensor, and an electric stimulator. The frame is removably couplable to a portion of a limb. The sensor is configured to produce a first signal associated with a gait characteristic at a first time, and a second signal associated with the gait characteristic at a second time, after the first time. The electric stimulator is removably coupled to the frame and is in electrical communication with an electrode assembly and the sensor to receive the first signal substantially at the first time and the second signal substantially at the second time. Based in part on the gait characteristic at the first time, the electric stimulator sends a third signal to the electrode assembly to provide an electric stimulation to a portion of a neuromuscular system of the limb substantially during a time period defined between the first time and the second time.
Abstract:
In some embodiments, a method includes inserting at least a distal end portion of an insertion tool within a body. The distal end portion of the insertion tool is coupled to an electronic implant having a stimulation portion, a terminal portion and a substantially flexible conductor disposed between the stimulation portion and the terminal portion. The distal end portion of the insertion tool is moved within the body such that the stimulation portion of the electronic implant is disposed adjacent a target location and the terminal portion of the electronic implant is disposed beneath a skin of the body.
Abstract:
In one embodiment, a method includes implanting an implant entirely under the subject's skin. The implant includes a passive electrical conductor of sufficient length to extend from subcutaneous tissue located below one of a surface cathodic electrode and a surface anodic electrode to the tibial nerve. The surface electrodes are positioned in spaced relationship on the subject's skin, with one of the electrodes positioned over the pick-up end of the electrical conductor such that the portion of the current is transmitted through the conductor to the tibial nerve, and such that the current flows through the tibial nerve and returns to the other of the surface cathodic electrode and the surface anodic electrode. An electrical current is applied between the surface cathodic electrode and the surface anodic electrode to cause the portion of the electrical current to flow through the implant to stimulate the tibial nerve.
Abstract:
An apparatus including a substrate, a power source, a connector, electrical circuitry, and an electrode assembly. The power source has positive and negative terminals, each coupled to the substrate and is configured to provide power to an external stimulator coupled to the apparatus. The connector is disposed proximate to the first surface of the substrate, is electrically coupled to at least one of the positive and negative terminals of the power source and is configured to electrically couple the external stimulator to the power source. The electrical circuitry is coupled to the substrate and is configured to electrically couple the connector to at least one of the positive and negative terminals. The electrode assembly is coupled to the second surface of the substrate. At least one electrode of the electrode assembly is configured to contact bodily tissue and facilitate transmission of an electrical current through the bodily tissue.
Abstract:
An apparatus includes a fitting device and an actuator movably coupled to the fitting device. The fitting device is configured to be disposed about a portion of a body. An inner surface of the fitting device has an attachment portion configured to removably couple an electrode to the inner surface of the fitting device. The actuator is configured to decouple the electrode from the attachment portion of the fitting device when the fitting device is disposed about the portion of the body.