Abstract:
There is described an inking apparatus of a printing press, in particular an offset or letterpress printing press, comprising at least one ink duct (11, 12) with an ink supply roller (13, 14), an ink roller train(30) comprising at least one inking roller (31) which receives ink from the at least one ink duct (11, 12), and at least one vibrator roller (15, 16) interposed between the ink supply roller (13, 4) and the inking roller (31), which vibrator roller (15, 16) is swung back and forth between the ink supply roller (13, 14) and the inking roller (31) and intermittently transfers ink from the ink supply roller (13, 14) to the inking roller (31). A circumference of the vibrator roller (15, 16) exhibits an ink-transfer 10 structure (15a, 16a) which reflects a desired inking profile of a printing plate to be inked by the inking apparatus and is designed to modulate a quantity of ink transferred by the vibrator roller (15, 16). The ink-transfer structure (15a, 16a) on the circumference of the vibrator roller (15, 16) is subdivided, in a circumferential direction (y) of the vibrator roller (15, 16), into an integer number 1 (r) of individual ink-transfer portions (15b, 16b) that are repeated with a determined circumferential period (Δy) in the circumferential direction (y), each individual ink-transfer portion (15b, 16b) reflecting the desired inking profile of the printing plate to be inked by the inking apparatus. A contact length (CL) over which the vibrator roller (15, 16) runs in contact with the ink supply roller (13, 20 4) is equivalent to the determined circumferential period (Δy) of the individual ink-transfer portions (15b, 16b) or to an integer multiple of the determined circumferential period (Δy) of the individualink-transfer portions (15b, 16b).
Abstract:
There is described a new coding approach for printed document authentication, one objective of which is to increase the difficulty of copying. In addition, this new coding approach provides better performance compared to other 2D coding technologies under certain constraints. The new coding technique requires less print space in comparison to other coding techniques. This is achieved by optimising some of the features which are used in standard 2D-codes for stabilisation and which are necessary for e.g. mobile applications. Furthermore, the code can be decomposed in elementary units, or "byte-units" which can be widely spread over a text document. Such "byte-units" can in particular be used for integration in text symbols. If a document protected with such a coding is copied, at least some of these symbols will be extensively degraded by the copying process. Therefore, copy detection is intrinsically achieved thanks to the new coding technique.
Abstract:
There is described a method of creating a transparent window (W*) in a security, especially paper, substrate (1) for security printing applications, the method comprising the steps of (i) providing a security substrate (1), (ii) forming an opening (10*) into and through the security substrate (1), and (iii) filling the opening (10*) with transparent material (2) thereby forming the transparent window (W*). The filling of the opening (10*) with the transparent material (2) is carried out in a state where the opening (10*) is open on both sides of the security substrate (1) and extends through the security substrate (1), the filling of the opening (10*) including the application of a first side (I) of the security substrate (1) against a supporting surface (21A) of a supporting member (20', 21) in such a way as to block one side of the opening (10*), while the transparent material (2) is applied inside the opening (10*) from the other side (II) of the security substrate (1). Advantageously, the method further comprises the step of forming a field of lenses (L) on one side of the transparent window (W*), in particular by replicating the field of lenses (L) directly into the transparent material (2) filling the opening (10*). Also described is a suitable device designed to fill the opening (10*) with the transparent material (2).
Abstract:
There is described a printed security feature (10) provided onto a printable substrate, which printed security feature includes a printed area (11) with at least a first printed section consisting of a multiplicity of geometric elements (GE, 15) printed with a given distribution over the printed area. The geometric elements are printed with at least first and second inks which exhibit the same or substantially the same optical appearance when illuminated with visible white light, such that the printed security feature produces a first graphical representation (A1) when illuminated with visible white light. At least the first ink is an ink which responds to non-visible light excitation by producing a characteristic optical response differentiating the first ink from the second ink. The printed security feature produces a second graphical representation (B1) when illuminated with non-visible light, which exhibits a distinctive two- dimensional graphic element (B) which is revealed only when the printed security feature is illuminated with non-visible light. The first printed section is subdivided into at least first and second printed portions (P1, P2), adjacent to the distinctive two-dimensional graphic element, and a third printed portion (P3), inside boundaries (200) of the distinctive two-dimensional graphic element. In the first, respectively second printed portion, the geometric elements are printed with the first, respectively second ink. In the third printed portion, the geometric elements are subdivided into first and second contiguous portions (GE_a, GE_b) which are respectively printed with the first and second inks. The first and second inks are printed in register one with respect to the other so that the boundaries of the distinctive two-dimensional graphic element are not visible when the printed security feature is illuminated with visible white light and the distinctive two-dimensional graphic element only becomes visible when the printed security feature is illuminated with non-visible light.
Abstract:
There is described a printed security feature (1) provided onto a printable substrate, which security feature includes a printed area (100) consisting of a multiplicity of adjacent rectilinear and/or curvilinear elements (110, 120) printed with a given spatial frequency. The rectilinear and/or curvilinear elements are printed with at least first and second inks which exhibit the same or substantially the same optical appearance when illuminated with visible white light, such that the security feature produces a first graphical representation when illuminated with visible white light, at least the first ink being an ink which responds to non- visible light excitation by producing a characteristic optical response differentiating the first ink from the second ink. The security feature produces a second graphical representation when illuminated with non-visible light, which second graphical representation exhibits a distinctive two-dimensional graphic element (B) which is revealed only when the security feature is illuminated with non-visible light. Inside boundaries (160) of the distinctive two-dimensional graphic element, a part (P3) of the rectilinear and/or curvilinear elements is printed with a combination of the first and second inks, the rectilinear and/or curvilinear elements being subdivided, within that part, into first and second juxtaposed sections (110a, 110b, 120a, 120b) which are respectively printed with the first ink and with the second ink. Outside the boundaries of the distinctive two-dimensional graphic element, portions (P1, P2) of the rectilinear and/or curvilinear elements are printed with only one of the at least first and second inks. The at least first and second inks are printed in register one with respect to the other so that the boundaries of the distinctive two-dimensional graphic element are not visible when the security feature is illuminated with visible white light and the distinctive two-dimensional graphic element only becomes visible when the security feature is illuminated with non-visible light.
Abstract:
There is described a sheet-fed rotary printing press (100; 200; 300) for the production of banknotes and like securities comprising at least one printing form cylinder (115, 125; 215; 315, 325) having one or more segments. A nominal diameter (D) of the at least one printing form cylinder (115, 125; 215; 315, 325) substantially corresponds to an integer multiple of a reference diameter of a one-segment cylinder (103a; 103c;...) as used for printing onto super-format sheets exhibiting a standardized format with a width of the order of 820 mm and a length of the order of 700 mm. An axial length (AL) of the at least one printing form cylinder (115, 125; 215; 315, 325) is comparatively greater than a nominal axial length of a corresponding printing form cylinder as used for printing onto super-format sheets, by an amount such that the at least one printing form cylinder (115, 125; 215; 315, 325) is suitable for printing onto large-format sheets having a comparatively greater width (W) than the width of super- format sheets. Preferably, a circumferential length (SL) of each segment of the at least one printing form cylinder (115, 125; 215; 315, 325) is comparatively greater than a nominal circumferential length of each segment of a corresponding printing form cylinder as used for printing onto super-format sheets, by an amount such that the at least one printing form cylinder (115, 125; 215; 315, 325) is suitable for printing onto large-format sheets having a comparatively greater length (L) than the length of super-format sheets.
Abstract:
There is described an intaglio printing press (1; 1*) comprising an intaglio cylinder (8) and an ink wiping system (10) with a rotating wiping roller assembly (11) contacting a circumference of the intaglio cylinder (8) for wiping excess ink from the surface of the intaglio cylinder (8), a rotational speed of the wiping cylinder being adjustable with respect to a rotational speed of the intaglio cylinder (8). The intaglio printing press (1; 1*) comprises an adjustable drive unit (25), which adjustable drive unit (25) is interposed between the wiping roller assembly (11) acting as a rotating output body of the adjustable drive unit (25) and a driving gear (100) coupled to the intaglio cylinder (8) and acting as a rotating input body of the adjustable drive unit (25). The adjustable drive unit (25) is designed to allow selected adjustment of a rotational speed of the wiping roller assembly (11) with respect to a rotational speed of the driving gear (100). In an adjusting state of the adjustable drive unit (25), driving into rotation of the wiping roller assembly (11) is adjusted by means of an adjustment motor (700) of the adjustable drive unit (25). In a non-adjusting state of the adjustable drive unit (25), the adjustment motor (700) is inoperative and driving into rotation of the wiping roller assembly (11) is performed exclusively mechanically via the adjustable drive unit (25), the wiping roller assembly (11) rotating at a defined rotational speed with respect to the rotational speed of the intaglio cylinder (8).
Abstract:
There is described a method of checking producibility of a composite security design of a security document, in particular of a composite banknote design, on a line of production equipment, the composite security design being the product of a combination of multiple sets of design features that are to be provided on a substrate as a result of a plurality of successive production operations carried out by means of the line of production equipment. The method comprises the steps of (a) providing digital design data representative of the composite security design of the security document, (b) modelizing, in a computer environment, the line of production equipment by means of which the composite security design is intended to be produced, (c) performing a computer simulation of production results of the plurality of successive production operations on the basis of the digital design data and the modelized line of production equipment, and (d) evaluating the computer simulated production results and determining, on the basis of these computer simulated production results, whether the composite security design can be produced on the line of production equipment.
Abstract:
There is described a sheet-fed or web-fed printing press for numbering and varnishing of security documents, including banknotes, comprising : - a numbering group (02) comprising at least one numbering unit (21, 22) for numbering printed material in the form of individual sheets or successive portions of a continuous web carrying multiple security imprints; and - a varnishing group (03; 03*) located downstream of the numbering group (02) for applying varnish onto recto and verso sides of the printed material, the varnishing group (03; 03*) comprising at least a first varnishing unit (31 ) disposed above a path of the printed material to apply varnish on the recto side of the printed material and at least a second varnishing unit (32) disposed below the path of the printed material to apply varnish on the verso side of the printed material.
Abstract:
There is described an installation (01; 02) for recycling wiping solution of one or more intaglio printing presses (10) comprising a flocculation tank (12) for inducing flocculation of ink constituents contained in waste solution coming from the one or more intaglio printing presses (10), a processing tank (14) for pre-treating the waste solution for subsequent filtering, and a filtering unit (15), preferably a filter press unit, for filtering the waste solution coming from the processing tank (14) and producing recycled solution at an output of the filtering unit (15), which recycled solution is recycled to produce fresh wiping solution for use by the one or more intaglio printing presses (10). According to one embodiment, the installation (01) further comprises a centrifugation unit (13) for separating the waste solution coming from the flocculation tank (12) by centrifugation into precipitate and centrifuged supernatant, which centrifuged supernatant is fed to the processing tank (14). According to a second embodiment, the installation (02) further comprises a decantation unit (13a) for separating the waste solution coming from the flocculation tank (12) by decantation into precipitate and decanted supernatant, which decanted supernatant is fed to the processing tank (14), and a centrifugation unit (13b) for further separating the precipitate produced by the decantation unit (13a) by centrifugation into further precipitate and centrifuged supernatant, which centrifuged supernatant is fed to the processing tank (14). There are also described corresponding processes for recycling wiping solution.