Abstract:
Clamping assemblies for securing (202) a solar module (100) to a structure include a base(212), a bracket(214), and a fastener(215). The base may be attached to a multi-planar roof of the structure. The base and the bracket together define a mounting region for receiving a portion of the solar module. The fastener connects the base and the bracket and can selectively apply a clamping force to the portion of the solar module.
Abstract:
A method for growing a crystal ingot from a melt in a crystal growing system is provided. The system includes a crucible and a barrier disposed within the crucible. The method includes identifying a Peclet number ( Pe ) with an advective transport rate that is less than a diffusive transport rate, calculating a cross-sectional area of a passage to be formed in the barrier based on the identified Peclet number to allow outward diffusion of impurities through the passage during growth of the crystal ingot, and growing the crystal ingot using the barrier having the passage formed therein.
Abstract:
A system for growing an ingot from a melt includes an outer crucible, an inner crucible, and a weir. The outer crucible includes a first sidewall and a first base. The first sidewall and the first base define an outer cavity for containing the melt. The inner crucible is located within the outer cavity, and has a central longitudinal axis. The inner crucible includes a second sidewall and a second base having an opening therein. The opening in the second base is concentric with the central longitudinal axis. The weir is disposed between the outer crucible and the inner crucible for supporting the inner crucible.
Abstract:
A system for growing a crystal ingot from a melt includes a first crucible, a second crucible, and a weir. The first crucible has a first base with a top surface and a first sidewall that form a first cavity. The second crucible is disposed within the first cavity of the first crucible, and has a second base and a second sidewall that form a second cavity. The second base has a bottom surface that is shaped to allow the second base to rest against the top surface of the first base. The second crucible includes a crucible passageway to allow movement of the melt therethrough. The weir is disposed inward from the second sidewall to inhibit movement of the melt from a location outward of the weir to a location inward of the weir.
Abstract:
A method of removing dust from granular polysilicon includes introducing a stream of granular polysilicon, dispersing the longitudinal stream of granular polysilicon by redirecting the stream into a radially outward flow having a circular pattern, and introducing a counter flow of gas in an opposite direction to that of the longitudinal stream of granular polysilicon to contact the radially outward flow to separate the dust from the granular polysilicon.
Abstract:
A system for growing an ingot from a melt includes a first crucible, a second crucible, and a weir. The first crucible has a first base and a first sidewall that form an outer cavity for containing the melt. The weir is located on top of the first base at a location inward from the first sidewall to inhibit movement of the melt from a location outward of the weir to a location inward of the weir. The second crucible is sized for placement within the outer cavity and has a second base and a second sidewall that form an inner cavity. Related methods are also disclosed.
Abstract:
Apparatus for use in preparing heterostructures having a reduced concentration of defects including apparatus for stressing semiconductor substrates to allow them to conform to a crystal having a different crystal lattice constant.
Abstract:
A method of bonding a first silica part to a second silica part includes coating contacting surfaces of the first and second silica parts with a solution having one of silica and silica precursors. The coated surfaces of the first silica part are placed adjacent to the coated surfaces of the second silica part to form an assembly, and the assembly is heated.
Abstract:
A method and apparatus for determining the fluidization quality of a fluidized bed reactor is disclosed. The method includes measuring pressure within the fluidized bed reactor to obtain a pressure signal. The pressure signal is then transformed using wavelet decomposition into higher-frequency details and lower-frequency approximations. The dominance of the various features is then calculated based on the energy of each feature in relation to the normalized wavelet energies. The fluidization quality of the fluidized bed reactor is then determined from a comparison over time of the calculated energies.