Abstract:
An automatic torque wrenching machine (1) comprises a frame (2) having a support member (3) which can be raised and lowered by admitting air to or allowing air to leave a pneumatic bellows (4). A tong assembly (6) is suspended from the support member (3) by four ties (9) comprising wire ropes (10) each of which is provided with a spring (11). The pneumatic bellows (4) allows pipes to be connected and disconnected with minimal forces on the threads. In addition, the ties enable the tong assembly (6) to float in a generally horizontal plane relative to the frame (2).
Abstract:
A load cell assembly (20; 220; 80) comprises load cell mounting apparatus (21; 31; 221, 231) which translates tensile and compressive forces on said load cell assembly into a unidirectional force which can be measured by, for example a tensile-load indicating load cell (40), a compression-indicating load cell (240) or a shear-indicating load cell (81).
Abstract:
A method of lining a wellbore having a tubular string cemented therein includes: running a liner string into the wellbore using a workstring having a liner deployment assembly (LDA) latched to the liner string; hanging the liner string from the tubular string and setting a seal of the liner string against the tubular string; opening a crossover valve of the liner string located below the set seal; and pumping cement slurry through the open crossover valve and down an annulus formed between the liner string and the wellbore.
Abstract:
Methods and apparatus are provided for transmitting light along multiple pathways using a multi-core optical device. One example apparatus generally includes a plurality of large diameter optical waveguides, each having a core and a cladding, and a body having a plurality of bores with the optical waveguides disposed therein, wherein at least a portion of the cladding of each of the optical waveguides is fused with the body, such that the apparatus is a monolithic structure. Such an apparatus provides for a cost- and space-efficient technique for feedthrough of multiple optical waveguides. Also, the body may have a large outer diameter which can be shaped into features of interest, such as connection alignment or feedthrough sealing features. For some embodiments, at least some of the cores may have different structural parameters (e.g., size and/or shape).
Abstract:
An apparatus deploys on a casing and has a toe with first and second ports for communicating with a wellbore. A packing element between the ports is actuatable to isolate portions of the wellbore. The toe operates in a first condition for run-in to prevent fluid communication through the ports, although washdown can flow through a toe port. Once installed, the toe operates in a second condition for cementation when the first plug is deployed to the toe. In this condition, the toe actuates the packing element, permits fluid communication through the first port, and prevents fluid communication through the second port. After cementation, the toe operates in a third condition for fracture and completion operations when the second plug is deployed. The toe in this condition prevents fluid communication through the first port, but permits fluid communication through the second port downhole of the set packing element.
Abstract:
The present invention generally concerns the treatment of hydrocarbon-bearing formations adjacent a wellbore. In one embodiment, fracturing jobs are performed through the use of subs disposed in a casing string having profiles that interact with profiles formed on retractable keys of a tool.
Abstract:
Re-treatment of a formation having a wellbore, which can be an open hole or a cased hole lined with casing, involves deploying a tubing string in the casing having tools disposed at intervals thereon. The tools position on the tubing string, and the tubing string with the tools thereon is inserted into the casing. Biasing rings of the tools passively engage with the casing. The annulus is accessed between the tubing string and the casing at the intervals between the tools. For example, sliding sleeves on the tubing string can be opened (selectively), or new plug and perforation operations can be used to create perforations in the tubing string at desired intervals between the tools. With access achieved, retreatment is pumped down the tubing string, out the access to the annulus, and at least partially sealed by the engaged rings in the intervals between the tools.
Abstract:
A gravel pack assembly includes screen sections with a packer between them. A first screen section communicates an uphole annulus with the assembly's interior passage, and a second screen section communicates a downhole annulus with the interior passage. A housing of the packer has an internal bore communicating with the assembly's interior passage and has an internal bypass communicating external ports with one another. A first packer element disposed between the external ports restricts gravel passage at least from the uphole to the downhole annulus. A second packer element disposed downhole from a second of the external ports is independently actuated to isolate fluid passage between the uphole and downhole annulus. One or more transport tubes communicate slurry from the uphole annulus to the internal bypass once the uphole annulus is packed with gravel.
Abstract:
The invention relates to apparatuses for internal pipe non-destructive control of pipelines. Technical result is increasing of operational reliability of the internal pipe pig based on use of wireless means for transmitting data and control signals between both internal pipe measurement, diagnosis and control means outside the pig and on-board processing and storing means. An internal pipe pig comprises an electronic system of the pig, comprising wireless data transmission means which comprise at least one electromagnetic signal transmitter, measuring and measured data processing means comprising at least one measuring unit and at least one data processing unit, wherein the wireless data transmission means also comprise at least one high-frequency electromagnetic signal receiver for receiving the transmitted data, which is connected to the data processing unit.
Abstract:
Methods and apparatus for fast sweeping a spectral bandwidth in order to distinguish among signals received from effectively wavelength division multiplexed (WDMed) and time division multiplexed (TDMed) optical components on a single fiber. For some embodiments, a method for interrogating optical elements having characteristic wavelengths spanning a sweep range is provided. The method generally includes introducing a pulse of light, by an optical source, into an optical waveguide to interrogate at least a first set of optical elements having different characteristic wavelengths by performing a sweep of wavelengths over a period of the pulse, wherein the period is less than a round-trip time for light reflected from an optical element closest to the optical source to reach a receiver and processing the reflected light to determine a parameter based on the times at which signals are received.