Abstract:
The claimed substance is obtained by the detonation of an explosive with a negative oxygen balance in an enclosed space and in an environment which is inert in relation to carbon, the detonation products being cooled at a rate of 200 to 6000 degrees per minute. The claimed substance contains 30 to 75 wt % carbon (cubic modification), 10 to 15 wt % X-ray amorphous carbon phase, the remainder being crystalline modification carbon. The proportions of different elements present are as follows: carbon 84 to 89 wt %, hydrogen 0.3 to 1.1 wt %, nitrogen 3.1 to 4.3 wt %, oxygen 2.0 to 7.1 wt %, non-combustible additives 2.0 to 5.0 wt %. The surface contains methyl, carboxyl, quinone, lactone, ester and aldehyde functional groups.
Abstract:
Apparatus and method for shock-induced phase transformations in materials where two opposing shock waves pass coaxially through the material (22) to be shocked from either end of its axial dimension on a converging path to a point where the shock waves collide.
Abstract:
It is proposed that the gases produced by the explosion in an explosion chamber or autoclave are not allowed to expand, but are used to carry out other operations in the production of the solid product required.
Abstract:
A gas reactor system may be configured for facilitating chemical reactions of gases using shockwaves produced in a supersonic gaseous vortex. The system may include a gas source to provide a gas to a heater and/or a reactor. The reactor may be configured to facilitate chemical reactions of gases using shockwaves created in a supersonic gaseous vortex. The reactor may be arranged with a gas inlet to introduce a high-velocity steam of gas into a chamber of the reactor. The gas inlet may effectuate a vortex of supersonic circulating gas within the chamber. The vortex may rotate at supersonic speed about the longitudinal axis of the chamber. The system may be configured to store an output product of the reactor in a storage tank in fluid communication with the reactor.
Abstract:
A shock wave reactor (11a, 11b, 102) for thermal cracking of hydrocarbon-containing feedstock, comprising a casing (4) wherein a duct (10) is formed with inlet (6, 6a) and outlet (7); a rotor (1, 1a) the periphery of which contains an axial- flow blade cascade (2); wherein the casing substantially encloses the periphery of the rotor (la) and a number of stationary vane cascades (8, 9) inside the duct, and further wherein the cascades (2, 8, 9) are configured to direct feedstock containing process stream to repeatedly pass said cascades in accordance with helical trajectory while propagating within the duct between the inlet and outlet and to generate stationary shock-waves to heat the feedstock. The axial- flow rotor cascade (2) is configured to provide kinetic energy and to add velocity to the feedstock containing process stream, and the stationary vanes located downstream the rotor cascade (2) are configured to reduce the velocity of the stream and convert kinetic energy into heat. The reactor may be configured for the realization of thermal cracking processes utilizing hydrocarbons; however it may be utilized for processing carbohydrate- and glyceride-based feedstock, including processing of gaseous biomass matter. Related methods for processing feedstock matter are presented.
Abstract:
A novel process and apparatus is disclosed for performing chemical reactions. Highly compressed gaseous streams such as H 2 , CO, C0 2 , H 2 0, 0 2 , or CH 4 are raised to Mach speeds to form supersonic jets incorporating Shockwaves. Two or more such jets are physically collided together to form a localized reaction zone where the energy from the Shockwaves causes endothermic reactions wherein the chemical bonds of the reactant gases are broken. Between and among reactants molecular surface interaction and molecular surface chemistry take place. In the ensuing exothermic reactions a desired new chemical product is formed and this product is locked into a lower state of enthalpy (state of energy of formation) through adiabatic cooling by means of a free-jet expansion.
Abstract:
Disclosed is a reactor and agitator useful in a high pressure process for making 1-chloro-3,3,3-trifluoropropene (1233zd) from the reaction of 1,1,1,3,3-pentachloropropane (240fa) and HF, wherein the agitator includes one or more of the following design improvements: (a) double mechanical seals with an inert barrier fluid or a single seal; (b) ceramics on the rotating faces of the seal; (c) ceramics on the static faces of seal; (d) wetted o-rings constructed of spring-energized Teflon and PTFE wedge or dynamic o-ring designs; and (e) wetted metal surfaces of the agitator constructed of a corrosion resistant alloy.
Abstract:
Apparatus and methods are provided for converting methane in a feed stream to acetylene. A hydrocarbon stream is introduced into a supersonic reactor and pyrolyzed to convert at least a portion of the methane to acetylene. The reactor effluent stream may be treated to convert acetylene to another hydrocarbon process.
Abstract:
Methods and systems are provided for converting methane in a feed stream to acetylene. The method includes processing the acetylene to form a stream having vinyl acetate. A hydrocarbon stream is introduced into a supersonic reactor and pyrolyzed to convert at least a portion of the methane to acetylene. The reactor effluent stream is treated to convert acetylene to vinyl acetate. The method according to certain aspects includes controlling the level of carbon monoxide to prevent undesired reactions in downstream processing units.