Abstract:
The invention relates to a process for the recovery of micas by flotation starting with slurried ore from which the fines have been optionally removed, comprising a stage of bringing the said slurry into contact with an appropriate cationic collector, followed by an actual flotation stage and recovery of the supernatant formed for subsequent treatment and optional rewashing, characterized in that it is carried out at a pH higher than 6 and in that the stage of bringing the said slurry into contact with the cationic collector is preceded by a stage of bringing the said slurry into contact with an activating agent chosen from soluble metal salts.The invention also relates to the micas obtained by the process.
Abstract:
There is disclosed a process for purifying a calcium carbonate-containing mineral which process comprises the following steps:a) mixing the calcium carbonate-containing mineral with water and a dispersing agent to form a suspension containing from 60% to 80% by weight of the dry mineral;b) comminuting the suspension of calcium carbonate-containing mineral prepared in step a) to give a product containing not more than 5% by weight of particles which are retained on a sieve having a nominal aperture of 53 microns and not more than 50% by weight of particles which are smaller than 2 microns e.s.d.;c) subjecting the suspension containing from 60% to 80% by weight of the dry comminuted mineral prepared in step b) to froth flotation using a collector for discoloring impurities which colletor comprises a cation containing at least one long chain alkyl group having from 10 to 24 carbon atoms, to yield an underflow product containing the calcium carbonate-containing mineral from which substantially all discoloring impurities have been removed; andd) further comminuting the underflow product of step c) to give a material of which at least 40% by weight of the particles have an equivalent spherical diameter smaller than 2 microns.
Abstract:
Method of treating a clay to remove therefrom titanium mineral impurities comprising the steps of mixing an aqueous clay with a collector for the titanium mineral impurities, a reducing agent, and, if needed, an activator preferably comprising a water-soluble ferrous salt; conditioning the resulting mixture of aqueous clay slurry, collector, reducing agent and activator to dissipate therein at least 25 horsepower hours of energy per ton of solids; subjecting the conditioned mixture to froth flotation and removing titanium impurities with the froth; and recovering clay having a reduced titanium minerals impurities content. The method includes the case where the activator is a ferrous salt formed in situ from iron impurities in the clay formed by adding said reducing agent in place of some or all of added activator.
Abstract:
A method of treating a clay to remove therefrom titanium mineral impurities comprising the steps of mixing an aqueous slurry of said clay having a high solids content with an activator and a collector for the titanium mineral impurities; conditioning the aqueous clay slurry at said high solids content for a time sufficient to dissipate therein at least 25 horsepower hours of energy per ton of solids; adding to the conditioned aqueous clay slurry a polyacrylate salt deflocculant; subjecting the conditioned aqueous clay slurry undiluted containing the polyacrylate salt deflocculant to a froth flotation process and removing the titanium impurities with the froth; and recovering clay having a reduced titanium minerals impurities content.
Abstract:
A process for the flotation of copper minerals employing xanthates, wherein the copper minerals are strongly activated in at least one stage at a pH of 10 to 12 and then conditioned with a dispersing agent or a flocculating agent prior to flotation, the process showing marked improvement in grade and recovery in the case of refractory ores and ore containing talc and clay, and being effective to concentrate copper sulphides, copper silicates and copper oxide in the same circuit.