Micro unmanned aerial vehicle and method of control therefor
    161.
    发明授权
    Micro unmanned aerial vehicle and method of control therefor 有权
    微型无人机及其控制方法

    公开(公告)号:US09352834B2

    公开(公告)日:2016-05-31

    申请号:US14738467

    申请日:2015-06-12

    Inventor: Barry Davies

    Abstract: A micro unmanned aerial vehicle or drone (“UAV”) 10 is remotely controlled through an HMI, although this remote control is supplemented by and selectively suppressed by an on-board controller. The controller operates to control the generation of a sonar bubble that generally encapsulates the UAV. The sonar bubble, which may be ultrasonic in nature, is produced by a multiplicity of sonar lobes generated by specific sonar emitters associated with each axis of movement for the UAV. The emitters produce individual and beamformed sonar lobes that partially overlap to provide stereo or bioptic data in the form of individual echo responses detected by axis-specific sonar detectors. In this way, the on-board controller is able to interpret and then generate 3-D spatial imaging of the physical environment in which the UAV is currently moving or positioned. The controller is therefore able to plot relative and absolute movement of the UAV through the 3-D space by recording measurements from on-board gyroscopes, magnetometers and accelerometers. Data from the sonar bubble can therefore both proactively prevent collisions with objects by imposing a corrective instruction to rotors and other flight control system and can also assess and compensate for sensor drift.

    Abstract translation: 微型无人驾驶飞行器或无人驾驶飞机(“UAV”)10通过HMI进行远程控制,尽管该遥控器由车载控制器补充并选择性地抑制。 控制器用于控制通常封装无人机的声纳气泡的产生。 本质上可能是超声波的声纳气泡由与用于UAV的每个运动轴相关联的特定声纳发射器产生的多个声纳波瓣产生。 发射器产生单个和波束形成的声纳波瓣,其部分重叠以提供以轴特定声纳探测器检测的单独回波响应形式的立体声或生物数据。 以这种方式,车载控制器能够解释然后生成UAV当前正在移动或定位的物理环境的三维空间成像。 因此,控制器能够通过记录来自车载陀螺仪,磁力计和加速度计的测量值来绘制UAV通过3-D空间的相对和绝对运动。 因此,来自声纳气泡的数据可以通过对转子和其他飞行控制系统施加纠正指令来主动防止与物体的碰撞,并且还可以评估和补偿传感器漂移。

    GOAL-BASED PLANNING SYSTEM
    162.
    发明申请
    GOAL-BASED PLANNING SYSTEM 有权
    基于目标的规划系统

    公开(公告)号:US20160068268A1

    公开(公告)日:2016-03-10

    申请号:US14888222

    申请日:2014-05-02

    Abstract: A method and apparatus for determining actions for entities (4, 6) such that a goal is accomplished constraints are satisfied. The method comprises: determining an initial plan comprising actions that, if performed by the entities (4, 6), the goal would be accomplished; determining that a constraint would not be satisfied if the initial plan was implemented; and iteratively performing steps (i) to (v) until a final plan that accomplishes the goal and satisfies the is determined. Step (i) comprises identifying a constraint that is not satisfied in part of the current plan. Step (ii) comprises determining a remedy that, if implemented, satisfies the identified constraint. Step (iii) comprises updating the goal specification to include the remedy. Step (iv) comprises, using the updated goal specification, determining a further plan that accomplishes the goal and the remedy. Step (v) comprises determining whether or not the further plan satisfies each constraint.

    Abstract translation: 一种用于确定实体(4,6)的动作的方法和装置,使得实现目标的约束被满足。 该方法包括:确定初始计划,其包括如果由实体(4,6)执行的动作,则该目标将被实现; 确定如果初始计划得到实施,约束将不会得到满足; 并迭代地执行步骤(i)至(v),直到确定达到目标并满足目标的最终计划。 步骤(i)包括识别在当前计划的一部分中不满足的约束。 步骤(ii)包括确定如果被实现的,满足所识别的约束的补救措施。 步骤(iii)包括更新目标规范以包括补救措施。 步骤(iv)包括使用更新的目标规范来确定实现目标和补救措施的进一步计划。 步骤(v)包括确定进一步的计划是否满足每个约束。

    PROJECTION ASSEMBLIES FOR USE WITH UNMANNED AERIAL VEHICLES
    163.
    发明申请
    PROJECTION ASSEMBLIES FOR USE WITH UNMANNED AERIAL VEHICLES 有权
    投影组合与无人驾驶的机动车一起使用

    公开(公告)号:US20160033855A1

    公开(公告)日:2016-02-04

    申请号:US14448777

    申请日:2014-07-31

    Abstract: A projection assembly for use with an unmanned aerial vehicle (UAV) such as quadrotors. The projection assembly includes a projection screen with a rear surface and a front surface, and the projection screen has a level of opacity and/or other physical qualities that enables it to function as a rear-projection surface. The projection assembly includes a vehicle attachment member adapted for coupling with a frame of the UAV, and the projection screen is supported at a first end by the vehicle attachment member. The apparatus includes a projector projecting light, and the projected light is directed onto the rear surface of the projection surface to generate a displayed image visible on the front surface. The projection screen can be formed from a mesh sheet with a porosity allowing air to flow through the projection screen. The mesh sheet may be formed of plastic threads that provide the rear-projection surface function.

    Abstract translation: 一种与无人驾驶飞行器(UAV)一起使用的投影组件,如四旋转。 投影组件包括具有后表面和前表面的投影屏幕,并且投影屏幕具有使其能够用作后投影表面的不透明度和/或其他物理质量的水平。 所述突起组件包括适于与所述UAV的框架联接的车辆附接构件,并且所述投影屏幕在第一端处被所述车辆附接构件支撑。 该装置包括投影仪投射光,并且投影光被引导到投影表面的后表面上以产生在前表面上可见的显示图像。 投影屏幕可以由具有允许空气流过投影屏幕的孔隙的网片形成。 网片可以由提供后投影表面功能的塑料线形成。

    Systems and Methods for Illumination and Observation
    164.
    发明申请
    Systems and Methods for Illumination and Observation 有权
    照明和观察系统与方法

    公开(公告)号:US20150358556A1

    公开(公告)日:2015-12-10

    申请号:US13776444

    申请日:2013-02-25

    Abstract: An aerial surveillance and reconnaissance system includes a gimbal-stabilized ISR imaging sensor with 0.8-1.2 microradian optical resolution, using pulsed ultraviolet laser (0.330-0.380 micrometer wavelength) radiation to illuminate the observed target, and a narrow-band-pass filter at the focal plane detector to remove light at frequencies other than the illuminating frequency. Preferred sensors can be operated in a snapshot mode using intermittent illuminating pulses, with timing of the pulses selected for minimum detectability based on observations made with a lower-resolution sensor, or in a video-mode with illuminating pulses selected to generate full-motion video at operator-selectable frame rates. Some sensor embodiments may further combine the UV system described above with conventional daylight optical and sensor systems, though alternative arrangements could also include an IR sensor as well (either using a common aperture with the UV system or with a separate set of light-gathering optics).

    Abstract translation: 空中监视和侦察系统包括使用0.8-1.2微焦距光学分辨率的万向节稳定ISR成像传感器,使用脉冲紫外激光(0.330-0.380微米波长)辐射来照射观察到的目标,以及一个窄带通滤波器 焦平面检测器以除了照明频率以外的频率移除光。 优选的传感器可以使用间歇照明脉冲在快照模式下操作,其中基于用较低分辨率传感器观察到的脉冲被选择用于最小可检测性的定时,或者在具有被选择用于产生全动态视频的照明脉冲的视频模式中 以操作员可选的帧速率。 一些传感器实施例可以进一步将上述UV系统与传统的日光光学和传感器系统组合,尽管替代布置还可以包括IR传感器(或者使用与UV系统的公共孔径或与单独的一组聚光光学器件 )。

    High speed airship structure
    169.
    发明授权
    High speed airship structure 失效
    高速飞艇结构

    公开(公告)号:US08439294B2

    公开(公告)日:2013-05-14

    申请号:US12384802

    申请日:2009-04-09

    Applicant: Sunstar Im

    Inventor: Sunstar Im

    Abstract: The structure provided multi-Levels of the center fuselage, two front wings, Extended mid-two wings and two rear wings with two vertical winglets.The fuselage has a cross section of half circle shaped fuselage.The first level comprises multi-fuel tanks, water tanks, Helium gas tanks, hydraulic, Pneumatic systems and plurality of the multi-landing gear bays and multi-cargo Compartments.The first level comprises a top cockpit and the plurality of the multi-passenger Cabins.The second level is comprises multi-central posts, multi-guy wires on the top center Beams, mid level, lower level center beams, leak proof sealed floor gates for the Multi-gas envelopes structure, under belly multi-pontoon air bags.The first level further comprises multi-jet power plants with multi-chute flaps.The second level may comprises, carbon fiber honey comb sandwich composite Multi-envelopes and multi-level soft gas envelopes.

    Abstract translation: 该结构提供了中央机身的多层次,两个前翼,扩展中二翼和两个后翼与两个垂直的小翼。 机身有半圆形的机身横截面。 第一级包括多燃料箱,水箱,氦气罐,液压,气动系统和多个起落架舱和多货舱。 第一级包括顶部驾驶舱和多个多乘客舱。 第二层包括多中心柱,多中心柱,多中心杆,顶级中心梁,中级,下层中心梁,多气体信封结构的防漏密封地板门,腹部多浮桥气囊。 第一级还包括具有多溜槽襟翼的多喷射发电厂。 第二级可以包括碳纤维蜂蜜夹心复合多信封和多层软气体包络。

Patent Agency Ranking