Abstract:
The present invention relates to a method for preparing a double-sided film containing the step of forming a film in the interface between air and the mixture of a polymer comprising amine group (—NH) and a compound containing phenol or catechol by exposing the mixture on the air. Particularly, the double-sided film of the present invention is a separation membrane that can separate the interface of liquid phase and gas phase and at the same time can be used as a biomaterial such as a haemostatic and also an waterproof agent. When the film is prepared in a moderate condition by using an enzyme, the film can include proteins and cells, resulting in the multi-functional versatility film that can be useful as a biocatalyst. The versatility film of the present invention, thus, is not expensive and the production method thereof is simple and eco-friendly. Therefore, the film of the invention has a high added-value as a novel separation membrane that can replace the conventional separation membrane.
Abstract:
The present invention is directed to dispensers, dispenser components and related methods for reducing or preventing sticking, drying, buildup, clogging, and/or misdirection of carbomer gel based products such as hand sanitizers by incorporating one or more salts, such as sodium chloride, as an additive to the polymer used to make certain pump and nozzle components of dispensers in such a way as to allow the salt crystals to access the polymer surface. The polymer/salt mixture is then formed into the desired dispenser component part by any conventional means, including without limitation, injection molding, compression molding, transfer molding, liquid injection molding, over molding, insert molding and/or blow molding.
Abstract:
Exemplary embodiments provide intermediate transfer members that can be used in electrostatographic devices and methods for using them in forming an image. The disclosed intermediate transfer members can include a plurality of nanotubes with high electrical conductivity, high thermal conductivity, and/or low humidity sensitivity. The hydrophobicity of the nanotubes can be controlled by covalently grafting hydrophobic components onto one or more nanotubes; surface treating one or more nanotubes; and encapsulating one or more nanotubes with hydrophobic components. In an exemplary embodiment, the nanotubes can be dispersed in polymer matrices and/or formed on the surface of polymer matrices of the intermediate transfer members. The intermediate transfer members can take various forms of belts, sheets, webs, films, rolls, tubes or any shape that can provide a smooth surface and rotatable function.
Abstract:
The invention is based on the recognition that known antimicrobial compounds, such as nisin or other lantibiotics, can be made to form a long lasting antimicrobial surface coating by linking the peptide with a block polymer, such as PLURONIC® F108 or an end group activated polymer (EGAP) in a manner to form a flexible tether and/or entrap the peptide. The entrapped peptide provides antimicrobial action by early release from entrapment while the tethered peptide provides longer lasting antimicrobial protection. Antimicrobial gels and foams may be prepared using the antimicrobial peptide containing block copolymers.
Abstract:
Methods for the preparation of polymer-templated core-shell nanoparticles include the steps of (a) preparing a cationic polymeric core material comprising polymeric micelles, and (b) coating the core material with a silica-comprising shell by depositing the shell onto the polymeric micelles from at least one silica precursor to form the core-shell nanoparticles. Compositions which include the core-shell nanoparticles are adapted to facilitate controlled delivery of at least one active agent into a system in response to controlled changes in the pH of the system.
Abstract:
The invention is based on the recognition that known antimicrobial compounds, such as nisin or other lantibiotics, can be made to form a long lasting antimicrobial surface coating by linking the peptide with a block polymer, such as PLURONIC® F108 or an end group activated polymer (EGAP) in a manner to form a flexible tether and/or entrap the peptide. The entrapped peptide provides antimicrobial action by early release from entrapment while the tethered peptide provides longer lasting antimicrobial protection. Antimicrobial gels and foams may be prepared using the antimicrobial peptide containing block copolymers.
Abstract:
The invention is based on the recognition that known antimicrobial compounds, such as nisin or other lantibiotics, can be made to form a long lasting antimicrobial surface coating by linking the peptide with a block polymer, such as PLURONIC® F108 or an end group activated polymer (EGAP) in a manner to form a flexible tether and/or entrap the peptide. The entrapped peptide provides antimicrobial action by early release from entrapment while the tethered peptide provides longer lasting antimicrobial protection. Antimicrobial gels and foams may be prepared using the antimicrobial peptide containing block copolymers.
Abstract:
The invention relates to a flame retardant product comprising a one or two dimensional substrate further comprising a crystalline triazine layer. The amount of trazine is such that the flame retardant properties of the substrate are improved and preferably the amount is about 0.1 g/m2 or higher, and about 500 g/m2 or lower. The triazine is preferably vapor deposited, and is preferably melamine.
Abstract translation:本发明涉及一种包含还包含结晶三嗪层的一维或二维底物的阻燃产品。 这种量的改善使基材的阻燃性能得到改善,优选为约0.1g / m 2以上,约500g / m 2以下。 三嗪优选气相沉积,优选为三聚氰胺。
Abstract:
An ethylene-vinyl alcohol copolymer (EVOH) composition comprises 100 parts by weight of a powder (A) having a particle size of from 22 to 850 μm of an ethylene-vinyl alcohol copolymer (a) which has an ethylene content of from 2 to 60 mol % and has a degree of saponification greater than 95%, and from 0.0001 to 2 parts by weight of inorganic particles (B) having primary particles with a mean particle size of from 1 to 100 nm. The EVOH powder coating composition of the present invention forms a coating film having good uniformity when applied to a substrate as powder coating, even when it contains 1 part by weight or more water relative to 100 parts by weight of EVOH resin.
Abstract:
The invention relates to the use of microparticles hydrophobized with fluorosilanes or -siloxanes for producing surfaces which have self-cleaning and also lactophobic, oleophobic and lipophobic properties. The use of microparticles hydrophobized with fluorosilanes in the known processes for producing self-cleaning surfaces makes it possible to produce surfaces which have not only self-cleaning properties but also lipophobic, oleophobic and lactophobic properties. Articles finished with such surfaces are especially easy to clean easily with removal of oil-, grease- or milk-containing soilings. The inventive use is therefore especially suitable for producing industrial textiles, workwear and children's clothing.