Abstract:
An inflatable shelter features a built-in air mattress at a base thereof that defines a ground footprint of the shelter. An inflationally erectable canopy features inflatable ribs with wall panels interspersed therebetween. An interior tent space is delimited between the inflated base mattress and overlying canopy. Some of the ribs cantilever outwardly from the base when inflated, creating one or more inflationally erectable overhangs that expand the covered area of the shelter beyond the base footprint thereof. A shared on-board inflation device inflates both the mattress and rib structure, whose inflatable interiors are fluidly isolated to allow user setting or tuning of the mattress pressure independently of the rib structure's inflation level. A power supply of the inflation device includes electrical ports for connection of chargeable devices, lighting, and other accessories. Arching rib pars meet with a central lengthwise rib, providing structural integrity and a spaciously elongated tent space.
Abstract:
Systems and methods described in this disclosure provide methods and systems for automatic deployment of a vehicle covering apparatus to protect the vehicle from environmental conditions such as severe weather.
Abstract:
During the contactless transfer of the data from PICC (1) to PCD (4) with the load modulation within PICC (1) the analogue signal between the transmitting antenna (3) and the output of the driver (2) is demodulated. From the demodulated output the digital data are generated for the direction of the subsequent modification of the signal led to the PICC (1) antenna set. The digital data gather from the demodulated signal are used for the amplification and/or attenuation of the signal received on the side of the PCD (4) and/or for synchronization or other modification of the signal on the side of the PICC (1), whereby no further modification of the driver (2) is needed. The connection on the LA, LB outputs appears to the driver (2) by its characteristics, mainly by its impedance, in the same way as the connected antenna (3) of the original connection according to the prior state of the art. Such processing and connection allows to use broadly available analogue drivers (2) which can be combined with various other elements of other producers, which achieves real compatibility and high amount of freedom when designing the circuits, as well as the independence from the particular producer of the chips.
Abstract:
The present invention relates to a structural element known in the technical field as “tensairity”, which introduces as distinctive elements with respect to the known art: (i) ropes in the shape-memory alloy (SMA) with superelastic (SE) and shape memory (ME) behaviour; (ii) mechanical tensioners for the adjustment of the initial tension in the ropes; (iii) optionally a control apparatus (processor) is connected to electric circuits that induce flow of intensity variable current through the SMA wire ropes; (iv) optionally devices for real-time monitoring of the temperature and the level of tension in the SMA ropes; (v) optionally devices for real-time monitoring of the tensairity oscillations; (vi) optionally new structural geometries capable of sustaining static actions and multidirectional dynamics.
Abstract:
A pneumatic tent (1) with at least one pole (2) extending in final assembly position vertically from the mounting surface (8) and a dome-shaped tent cover (3) extending over the self-supporting pole (2) which is locked and tensioned with locking means (4) in relation to the mounting surface (8), wherein the pole (2) containing a pressurized filling gas is constructed as single or multiple layered and includes a controllable or adjustable illumination device (5) that is placed inside the pole (2).
Abstract:
An airform that can be inflated, for example, for facilitating construction of a structure is provided. The airform may include a first portion, a second portion, or multiple other portions, and reinforcement. The first portion may, for example, be configured to be disposed in a first orientation, such as vertically or in a radial profile, when the airform is inflated. The second portion transitioning from the first portion may be configured, for example, to assume an alternate shape and profile, such as a radial shape and profile, when the airform is inflated. The reinforcement may, for example, be provided at a portion of the airform that defines a transition from the first portion to the second portion.
Abstract:
Ballast systems for, particularly, inflatable decontamination shelters are described. The systems may be integrated into the overall structures of the shelters so as to avoid need for sand bags or other discrete weight-providing objects. They additionally may use liquids (rather than or in addition to solids) for weight-providing purposes, with the liquids including water supplied by the same plumbing system that supplies a shower of a shelter.
Abstract:
A portable shelter with low emissivity is provided for sheltering materials or human occupants at a remote location. The shelter has a flexible, multi-layer cover, including a vinyl material, reflective material located inside and immediately adjacent to the vinyl material, and insulation material located inside the reflective material. The low-ε vinyl cover is lightweight and thermally efficient. The shelter may be adapted for use with interior-climate control equipment at the remote location.
Abstract:
A tethermast and frag wall includes a fabric device having a fill volume fillable with a fill material on a flexible or compliant mast system. The fill volume may be a chambered curtain. The tethermast and frag wall is self supporting, easily deployed, and may be used in connection with a structure or may be deployed stand-alone. A tether system for an air beam structure utilizing a flexible tethermast, an external frag wall or frag curtain, soft couplings, air beam slings, or combinations thereof to reduce the effects of pressure waves, such as blast waves, onto and into an air beam structure and any inhabitants.
Abstract:
A hard walled shelter has first and second substantially parallel corner posts. The hard walled shelter also has an upper frame support extending between first ends of the corner posts and a lower frame support extending between second ends of the corner posts. The hard walled shelter additionally has a moveable wall. The moveable wall has a lower portion hinged at the lower frame support and an upper portion that fits securely on the interior of the corner posts when the moveable wall is in a closed configuration. When the moveable wall is in an open configuration the moveable wall is disposed away from the hard walled shelter to form an opening in the shelter. The hard walled shelter also has a coupling that extends around the perimeter of the opening in the shelter.