Abstract:
A method of monitoring degradation of seals of a packing case includes receiving signals from a first temperature sensor installed in a first location in a housing of the packing case; receiving signals from a second temperature sensor installed in a second location in the housing of the packing case; computing, from the signals, a temperature differential between the first temperature sensor and the second temperature sensor at two or more times; and determining, at least in part from the temperature differential at the two or more times, a degradation indicator for at least one of the seals of the packing case.
Abstract:
A pump including one or more pumping chambers, one or more drive mechanisms for driving the one or more pumping chambers and a logic arrangement. The first pumping chamber of the one or more pumping chambers has a first inlet check valve, a first outlet check valve and a first temperature sensor. The logic arrangement is configured to identify a leak by applying logic to at least resistance-data indicative of a resistance of the first pumping chamber to the driving and temperature-data at least based on output from the first temperature sensor.
Abstract:
Systems and methods for monitoring the performance of reciprocating compressors are disclosed. The monitoring system includes inductive power generation at individual cylinders of the compressor, alleviating the need to run power supply and conduits to each of the cylinders. The inductive system also allows piston position to be determined at each cylinder. Data acquired at each cylinder can be telemetered to a central hub for processing.
Abstract:
Provided is an air conditioning apparatus that is capable of suppressing increases in volume and cost of the apparatus and performing more suitable overheating protection. An electric compressor is an inverter-integrated electric compressor (10) integrally including a compressor (5), an electric motor (6) that drives the compressor (5), and an inverter (7) including a temperature sensor (11) that detects the temperature in the vicinity of a semiconductor switching device, wherein a controller (3) estimates a discharge temperature of the compressor (5) on the basis of a correlation of respective pressure loading characteristics for the detected temperature of the inverter (7), for the rotational speed of the compressor (5), and for the motive force of the compressor (5) in a refrigerating cycle (2).
Abstract:
A motor-driven compressor includes a compression unit having a compression chamber, a rotation shaft, an electric motor having a coil, a motor driving circuit, a housing, and a shaft support. The coil includes a first coil end, which is relatively close to the motor driving circuit, and a second coil end, which is relatively close to the compression unit. The housing includes a first area and a second area. A refrigerant passage communicates the first area with the second area. The shaft support includes a guide wall that guides the refrigerant to flow along the radial outer surface of the second coil end. The refrigerant guided by the guide wall is drawn into the compression chamber from the second area through a first suction passage. The first suction passage and the refrigerant passage are arranged at opposite sides of the rotation shaft.
Abstract:
An implantable pumping system for pumping a fluid in an implantable gastric banding system comprises a pump for pumping the fluid. A voltage source provides a pump voltage to the system, and a voltage control circuit increases or decreases the pump voltage. A pump driver applies the pump voltage to the pump at a phase and a frequency. The implantable pumping system comprises a sensor that monitors a parameter to facilitate adjusting at least one of the phase or the frequency to maintain a desired value of the parameter. The parameter is associated with at least one of the implantable pumping system or the implantable gastric banding system. A micro controller is configured to manipulate at least one of the phase or the frequency to maintain the desired value of the parameter. The sensor may comprise a temperature sensor, a pressure sensor, and/or a flow rate sensor.
Abstract:
Provided is a configuration which prevents an engine from being unable to start in the state in which dew condensation occurred in a fuel injection pump and froze. The present invention relates to a fuel injection pump which is provided with a pump body and a hydraulic head and driven by an engine, and is characterized in that while the engine is in operation, the temperature of the hydraulic head is increased to a dew-point temperature or higher. Consequently, it is possible to increase the temperature of the hydraulic head and remove water in the fuel injection pump while the engine is in operation. Accordingly, the engine can be prevented from being unable to start in the state that dew condensation occurred in the fuel injection pump and froze.
Abstract:
A system and method for flooded start control of a compressor for a refrigeration system is provided. A temperature sensor generates temperature data corresponding to at least one of a compressor temperature and an ambient temperature. A control module receives the temperature data, determines an off-time period since the compressor was last on, determines an amount of liquid present in the compressor based on the temperature data and the off-time period, compares the amount of liquid with a predetermined threshold, and, when the amount of liquid is greater than the predetermined threshold, operates the compressor according to at least one cycle including a first time period during which the compressor is on and a second time period during which the compressor is off.
Abstract:
Method and equipment to control operating temperature of an air compressor. A compressor element compresses air and oil and supplies it to an oil separator. In the separator, the air and oil are separated. Oil is led to a circulating pipe and returned to the compressor element. When necessary, at least some of the oil flowing in the oil circulating pipe is supplied to cooling, which is used for controlling operating temperature of the compressor such that it is as low as possible, but nevertheless so high that no condensation point is reached. The amount of oil to be supplied to cooling is controlled by a thermostatic valve based on a change in dimension of a controlling element such that dimensions of the controlling element are changed by an external command.
Abstract:
In a method for controlling operation of a compressor, the compressor is shut off by a control device in order to prevent thermal damages when an estimated temperature value Ts calculated by said control device exceeds an upper threshold value Tmax while the compressor remains on or is allowed to be turned on when there is a need for compression and a lower threshold value Tmin is not reached. In order to be able to more accurately estimate the estimated temperature and increase the thermal availability of the compressor, the estimated temperature value Ts is indirectly and cyclically determined by means of a mathematical-physical model that characterizes the cooling and heating properties of the compressor.