Abstract:
Die Erfindung betrifft einen Tank für ein kryogenes Flüssiggas und zwar insbesondere für LNG, also für flüssiges Erdgas bzw. flüssiges Methan. Die Erfindung betrifft ferner ein Flugzeug mit einem solchen Tank sowie ein Verfahren für das Herstellen eines derartigen Tanks. Es wird ein Tank hergestellt, der eine äußere, formstabile Struktur und eine druckfeste, kälteresistente Folie umfasst, die einen im Tank aufgrund von Boil-Off Gas entstehenden Überdruck geeignet aufzufangen vermag. Die geeignet flexible Folie ist bzw. wird so gewickelt, dass dadurch ein schlauchartiger Raum bzw. eine schlauchartige Hülle gebildet wird. Es kann mit Hilfe der Folie ein hinreichend druckfester, kälteresistenter, leichter Tank für die Lagerung von kryogenem Flüssiggas bereitgestellt werden, der vor allem aufgrund der Flexibilität der Folie auch nachträglich in ein Flugzeug eingebaut werden kann.
Abstract:
A cryogenic tank for use in a vessel. The tank is mounted between two horizontal fundaments (8,9) or decks, where the tank is resting on the lower fundament (9). The top of the tank is connected to the upper fundament (8) by an upper cylindrical skirt (7), and the upper cylindrical skirt (7) has a diameter smaller than the diameter of the cylindrical part of the tank (1). The upper cylindrical skirt (7) rests on the inner part of a horizontal outer part (4) of the top of the tank. The outer part of the top of the tank has a flexibility arranged to absorb changes of the upper and lower fundaments (8, 9) positions according to each other, and at the same time absorb changes of the dimensions of the tank in consequence of temperature changes.
Abstract:
A fitting with a dual locking swaging mechanism includes a projection to be inserted into the open end of an elastomeric tube. A protective sleeve is disposed over the projection. A ferrule is connected at one end thereof to a body portion of the fitting and is swaged over the tube to hold the tube onto the projection inserted into the tube. The tube is thereby held to the fitting by both frictional engagement of the tube with the projection and the ferrule and by the connection of the ferrule with the main body of the fitting.
Abstract:
A vehicle (300) includes a storage pack (310) for storing gas under pressure for providing an onboard supply of the pressurized gas. The pressurized gas may be used as a medicinal gas, e.g. oxygen, on emergency medical vehicles, or the gas may be used as a fuel source for a motorized vehicle having a motor that runs on combustible gas. The gas storage pack includes a pressure vessel (312) formed from a plurality of hollow chambers (314), which have either an ellipsoidal or spherical shape, interconnected by a plurality of relatively narrow conduit (316) sections disposed between consecutive ones of the chambers (314). The pressure vessel includes a reinforcing filament wrapped around the interconnected chambers and interconnecting conduit sections to limit radial expansion of the chambers and conduit sections when filled with a fluid under pressure. The gas storage pack (310) further includes a gas transfer control system attached to the pressure vessel for controlling gas flow into and out of the pressure vessel.
Abstract:
A resilient multi-layer container is configured to receive a quantity of hyperpolarized noble fluid such as gas and includes a wall with at least two layers, a first layer with a surface which minimizes contact-induced spin-relaxation and a first or second layer which is substantially impermeable to oxygen. The container is especially suitable for collecting and transporting He. The resilient container can be formed of material layers which are concurrently responsive to pressure such as polymers, deuterated polymers, or metallic films. The container can include a capillary stem and/or a port or valve isolation means to inhibit the flow of gas from the main volume of the container during transport. The resilient container can be configured to directly deliver the hyperpolarized noble gas to a target interface by deflating or collapsing the inflated resilient container. In addition, single layer resilient containers with T1's of above 4 hours for Xe and above 6 hours for He include materials with selected relaxivity values. In addition, a bag with a port fitting or valve member and one or more of a capillary stem and port isolation means is configured to minimize the depolarizing effect of the container valve or fitting(s). Also disclosed is a method for determining the gas solubility in an unknown polymer or liquid using the measured relaxation time of a hyperpolarized gas.
Abstract:
A compact portable transport unit (10) for shipping hyperpolarized noble gases and shielding same from electromagnetic interference and/or external magnetic fields includes a means for shifting the resonance frequency of the hyperpolarized gas outside the bandwidth of typical frequencies associated with prevalent time-dependent fields produced by electrical sources. Preferably the transport unit includes a magnetic holding field which is generated from a solenoid (20) in the transport unit (10). The solenoid (20) includes a plurality of coil segments and is sized and configured to receive the gas chamber of a container (30). The gas container (30) is configured with a valve (32), a spherical body (33), and an extending capillary stem (35) between the valve and the body. The gas container (30) or hyperpolarized product container can also be formed as a resilient bag. The distribution method includes positioning a multi-bolus container within the transport unit to shield it and transporting same to a second site remote from the first site and subsequently dispensing into smaller patient sized formulations which can be transported (shielded) in another transport unit to yet another site.
Abstract:
The present invention relates to a method for the riddance of carbon dioxide by disposal into deep sea water of carbon dioxide being brought to be present in solid state at a low temperature at atmospheric pressure, so called dry ice. To enable a fast conveyance of dry ice blocks to large depths sublimated/condensed carbon dioxide, so-called dry ice is compressed or compacted together with some ballast (3), e.g. gravel or any other material with a high density to coherent bodies (1) with a density being essentially higher than that for dry ice (2). Before disposal preferably occurring at a depth of at least fifteen hundred meters, the bodies are conveniently wrapped into a gas permeable plastic enveloppe (5).
Abstract:
Herkömmliche Vorrichtungen und Verfahren zur Bestimmung des gespeicherten Volumens eines Speicherbehälters mit wenigstens teilweise flexibler Begrenzung, haben eine unzureichende Genauigkeit, da nur ein Punkt oder wenige Punkte des flexiblen Abschnitts abgetastet werden oder sie sind unverhältnismäßig komplex. Die Erfindung soll es ermöglichen, mit einer einfachen Vorrichtung eine hohe Genauigkeit zu erzielen. Bänder, die den Flexiblen Abschnitt (11) des Speicherbehälters (10) abtasten können eine hohe Anzahl von Punkten des flexiblen Abschnitts (11 ) Abtasten, ohne die Komplexität der Vorrichtung unverhältnismäßig zu steigern. Ferner können bei einer solchen Vorrichtung die Sensoren (13) weitgehend frei positioniert werden, vorzugsweise an einer gut zugänglichen und gut geschützten Stelle. Geeignete Auswertungsverfahren können die Genauigkeit weiter verbessern. Vorrichtungen und Verfahren zum genauen Bestimmen eines gespeicherten Gasvolumens, die ohne hohe Komplexität genaue Messergebnisse bieten, sind geeignet, damit ausgestattete Biogasanlagen nutzbar zu machen um die Schwankungen des Stromangebotes, die vor allem durch die unregelmäßige Stromerzeugung durch Windkraft- und Solaranlagen entstehen, auszugleichen.
Abstract:
An underwater carbon dioxide storage facility including a carbon dioxide deposit stored underwater as a clathrate includes a flexible barrier disposed at least partially over the carbon dioxide deposit. The carbon dioxide deposit may be stored in or at the bottom of a body of water.
Abstract:
The present invention relates to covering for a gas storage(100). The covering comprises an interior membrane (102) which is mountable to the gas storage (100) for at least partially enveloping an inner volume (Vs,i) of the storage (100) for storing industrial gas. Further, the covering comprises an exterior membrane (101) which is mountable to the gas storage (100), wherein the exterior membrane (101) covers the interior membrane (101) in such a way that an outer volume (Vs,o) for storing support gas is generated between the exterior membrane (101) and the interior membrane (102). The exterior membrane (101) comprises a material with an ultimate elongation of more than 100%.