Abstract:
A gas measurement system for measuring the concentration of gaseous and/or vaporous components of a gas mixture by means of a color change of at least one reaction substance on a reaction support unit, which is arranged in at least two light permeable channels in such a manner that the color change on the reaction substance can be detected at low expense on a large number of separate positions. The detecting unit which detects the color change can be designed as a digital camera with an electronic image converter or image sensor, and an imaging optics system (e.g., a lens system). Related systems, methods, apparatus, and articles are also described.
Abstract:
The present invention provides a color measuring apparatus and a printing apparatus that enable the user to easily keep a backing plate. A color measuring apparatus includes a holder on which a backing plate is capable of being attached, the backing plate having a white portion and a black portion, and a sensor for measuring color patterns on a sheet on the backing plate. Either one of the white portion and the black portion faces the sensor, depending on the attached state of the backing plate on the holder.
Abstract:
Cuvette, comprising at least one measuring area on each one of two arms that are pivotally connected to each other such that from a swung-apart condition, they can be swung together into a measuring position in which the two measuring areas have a distance for positioning a sample between the measuring areas, and means for positioning the two arms in a measuring position in a cuvette shaft of an optical measuring device with a sample between the two measuring areas in a beam path of the optical measuring device that crosses the cuvette shaft.
Abstract:
Disclosed is an inspecting equipment for inspecting a light emission characteristic of a display screen includes: a carrying device provided for carrying the display screen, a cover device and a data analyzing device. The cover device has a detecting surface provided with a plurality of luminance detectors, and covers an emitting surface of the display screen to form a darkroom between the cover device and the detecting surface. A plurality of corresponding luminance information is generated by the luminance detectors provided for detecting a plurality of measuring zones of the emitting surface. The data analyzing device receives the luminance information and analyzes the light emission characteristic of the display screen according to the luminance information. And, it is thus able to rapidly inspect the light emission characteristic of the display screen during manufacture process, and is easy to be applied to a present producing line.
Abstract:
A method and system for testing the functional capability of an analytical instrument uses first and second blind samples. Each blind sample is a test substance with an amount of a parameter to be tested that is unknown to the user. Each blind sample is provided with an identification means with a unique identification. When the blind samples are tested by the user in the instrument being tested, the measurement values obtained and the unique identifications read are compared against predetermined values that are accessible to a test program configured as software on the analytical instrument. By comparison of the measurement values and the predetermined values, the functional capability of the analytical instrument is determined and the result is transmitted to an output unit of the analytical instrument.
Abstract:
A light emitter emits light with a plurality of wavelengths towards a test object held in a spectrophotometer tool. A light receiver receives the light passing through the test object. A detector detects absorbances of wavelength components from the light received by the receiver. An optical path length calculator compares, in the absorbances of the wavelength components detected, a wavelength component absorbance of light absorbed by a pigment that absorbs light with a wavelength other than a wavelength of light absorbed by an analyte in the test object and a predetermined value of the wavelength component absorbance to calculate an optical path length passing through the test object. A corrector corrects the wavelength component absorbance detected excluding the wavelength of the light absorbed by the pigment using the optical path length calculated by the optical path length calculator to calculate a corrected wavelength component absorbance in a reference optical length.
Abstract:
A dual-mode method and apparatus of selectively measuring samples in either a vessel or as a surface tension retained sample held between two opposing pedestals is introduced. In either configuration, such modes further contain optical paths from a source system through a small-volume or large-volume sample to a spectrometer based system. Such a system enables a user to measure samples with absorbances ranging from about 0.005 up to about 2.0 Absorbance Units for any given wavelength.
Abstract:
An integrated spectral sensing engine featuring energy sources and detectors within a single package includes sample interfacing optics and acquisition and processing electronics. The miniaturized sensor is optimized for specific laboratory and field-based measurements by integration into a handheld format. Design and fabrication components support high volume manufacturing. Spectral selectivity is provided by either continuous variable optical filters or filter matrix devices. The sensor's response covers the range from 200 nm to 25 μm based on various solid-state detectors. The wavelength range can be extended by the use of filter-matrix devices. Measurement modes include transmittance/absorbance, turbidity (light scattering) and fluorescence (emission). On board data processing includes raw data acquisition, data massaging and the output of computed results. Sensor applications include water and environmental, food and beverage, chemical and petroleum, and medical analyses. These can be expanded into various field and consumer-based applications.
Abstract:
An auto-tracking spectrophotometer has a moveable look-ahead sensor for scanning at least a portion of a color matrix. The look-ahead sensor finds a portion of the color matrix for measurement by an optical system. The optical system for measuring the color matrix is then guided using the information provided by the look-ahead sensor.
Abstract:
A dental color measurement tool disposed opposite an opening portion for capturing light from an artificial tooth to undergo color measurement with a color measurement device includes at least one pair of guide posts having an engaging portion corresponding to an engaging portion on the color measurement device side, and an abutment post disposed between the pair of guide posts and having a pointed convex shape to which the artificial tooth can be mounted. The abutment post has a color measurement reference surface in a color measurement light axis direction as the vicinity of a focus position of the color measurement device in a photographing state. When performing color measurement photographing, the artificial tooth is mounted to the abutment post to position the front thereof at the color measurement reference surface. Thus, the artificial tooth can be stably retained at a suitable position with respect to the color measurement device.