Abstract:
The invention provides for a multiple analyte detector that is capable of detecting and identifying explosive, chemical or biological substances having multiple analytes with a single system having multiple reporters. The reporters include fluorescent polymers, conducting polymers, metal oxide elements; electrochemical cells, etc. The reporters may be combinations of other reporters that are optimized for broadband detection.
Abstract:
An efficient absorption spectroscopy system is provided. The spectroscopy system may be configured to measure solid, liquid or gaseous samples. Vacuum ultra-violet wavelengths may be utilized. Some of the disclosed techniques can be used for detecting the presence of trace concentrations of gaseous species. A preferable gas flow cell is disclosed. Some of the disclosed techniques may be used with a gas chromatography system so as to detect and identify species eluted from the column. Some of the disclosed techniques may be used in conjunction with an electrospray interface and a liquid chromatography system so as to detect and identify gas phase ions of macromolecules produced from solution. Some of the disclosed techniques may be used to characterize chemical reactions. Some of the disclosed techniques may be used in conjunction with an ultra short-path length sample cell to measure liquids.
Abstract:
An apparatus for examination of a sample includes at least one sample chamber in which the sample can be provided, where the sample chamber has a detection surface; at least one light source for emitting a first input light beam which is totally internally reflected at the detection surface of the sample chamber into a first output light beam, and for emitting a second input light beam which is at least partially transmitted through the sample chamber into a second output light beam. The apparatus further includes at least one light detector for detecting the first and the second output light beams. The sample chamber is elongated and traversed in longitudinal direction by light of the second input light beam.
Abstract:
Portable systems and methods for amplifying nucleotides and for detecting nucleotide sequences in a sample are provided. The portable instruments and methods use RPA techniques for DNA amplification and detect sample fluorescence in response to amplification and/or to the presence of specific DNA sequences.
Abstract:
Systems and methods are provided for sample processing. A device may be provided, capable of receiving the sample, and performing one or more of a sample preparation, sample assay, and detection step. The device may be capable of performing multiple assays. The device may comprise one or more modules that may be capable of performing one or more of a sample preparation, sample assay, and detection step. The device may be capable of performing the steps using a small volume of sample.
Abstract:
Systems and methods are provided for sample processing. A device may be provided, capable of receiving the sample, and performing one or more of a sample preparation, sample assay, and detection step. The device may be capable of performing multiple assays. The device may comprise one or more modules that may be capable of performing one or more of a sample preparation, sample assay, and detection step. The device may be capable of performing the steps using a small volume of sample.
Abstract:
A system for conducting an assay comprises a power source (16), a controller (13) for controlling the assay and a plurality of assay units (14) operatively connected to one another such that the controller can communicate with the assay units and the system is capable of conducting the assay. An assay device comprises a substantially circular body (24) having a plurality of chambers in fluid connection such that fluid can pass between said chambers and a central hub (200) having a sample inlet (202) disposed therein for receiving a sample.
Abstract:
Systems and methods are provided for sample processing. A device may be provided, capable of receiving the sample, and performing one or more of a sample preparation, sample assay, and detection step. The device may be capable of performing multiple assays. The device may comprise one or more modules that may be capable of performing one or more of a sample preparation, sample assay, and detection step. The device may be capable of performing the steps using a small volume of sample.
Abstract:
A process analysis unit includes a base module and an exchangeable cartridge module. The base module comprises at least one independent pump drive, and an analyte sensor without a fluidic measuring section. The cartridge module comprises a liquid reservoir tank, a sample taking device, at least one drive-less pump mechanism configured as a peristaltic membrane pump, a fluidic measuring section for the analyte sensor, and a plastic material plate with groove-like microfluidic channels configured to connect the liquid reservoir tank, the at least one drive-less pump mechanism, and a measuring section. The drive-less pump mechanism is driven pneumatically and pumps a liquid from the liquid reservoir tank. When the cartridge module is connected to the base module, the at least one drive-less pump mechanism is connected to and is driven by the at least one independent pump drive, and the fluidic measuring section is connected to the analyte sensor.
Abstract:
The invention relates to means for the examination of a sample, wherein a first input light beam (L1) is totally internally reflected at a detection surface of a sample chamber (111), while a second input light beam (L1′) is transmitted through the sample chamber (111). The resulting first and second output light beams (L2, L2′) are detected and can be evaluated with respect to frustrated total internal reflection and optical absorbance, respectively. Preferably, both output light beams (L2, L2′) are detected by a single image sensor (155).