Abstract:
A photonic measurement system, such as an atomic absorption spectrometer, includes source, sample and detection modules that are interconnected by fiber optic cables. A first set of fiber optic cables guides light from one or more light sources in the source module to each of at least two analysis chambers in the sample module. A second set of fiber optic cables guides light from the analysis chambers to a detector in the detection module. The detector provides to a processing sub-system signals that correspond to intensities of the guided light. One analysis chamber is selected to perform a sample analysis at a given time, and the processing sub-system processes the signals associated with the selected analysis chamber as measurement signals. The processing sub-system may further process the signals associated with a given non-selected analysis chamber as reference signals.
Abstract:
The present invention pertains to a method and apparatus for hemometry in humans. Pressure is applied proximal to a target area in human tissue. A modulated optical signal based on a digital code sequence is transmitted to the target area. A temporal transfer characteristic is derived from the modulated optical signal. Concentration of an analyte is determined based on the temporal transfer characteristic.
Abstract:
The disclosure relates generally to methods and apparatus for using telescope optics and a fiber array spectral translator-based (“FAST”) spectroscopic system for improved imaging, spectral analysis, and interactive probing of a sample. In an embodiment, the confocality of a fiber array spectral translator-based spectroscopic system is improved through the use of structured illumination and/or structured collection of photons. User input may be received and acted upon to allow a user to interactively in real time and/or near real time view and analyze specific regions of the sample.
Abstract:
[Object] To provide a gas monitoring device etc. with which gas monitoring can be preformed at high sensitivity by using an InP-based photodiode in which a dark current is reduced without a cooling mechanism and the sensitivity is extended to a wavelength of 1.8 μm or more.[Solution] An absorption layer 3 has a multiquantum well structure composed of group III-V semiconductors, a pn-junction 15 is formed by selectively diffusion of an impurity element in the absorption layer, and the concentration of the impurity element in the absorption layer is 5×1016/cm3 or less. The gas monitoring device detects a gas component and the like contained in a gas by receiving light having at least one wavelength of 3 μm or less.
Abstract:
A spectrometer is provided with an integrating sphere 20, inside which a sample S of a measurement target is disposed and which is adapted for observing measured light emitted from the sample S, and a Dewar vessel 50 which retains a refrigerant R for cooling the sample S and at least a portion of which is located so as to face the interior of the integrating sphere 20. Gas generated from the refrigerant R is introduced through predetermined gaps G1-G6 functioning as a gas introduction path and through a plurality of communicating passages 64 formed in a support pedestal 61, into the integrating sphere 20. The gas introduced into the integrating sphere 20 absorbs water in the integrating sphere 20 to decrease the temperature in the integrating sphere 20, so as to prevent dew condensation from occurring on a portion of a second container portion 50b of the Dewar vessel 50 exposed in the integrating sphere 20. This can prevent occurrence of dew condensation even in the case where the sample S is measured in a cooled state at a desired temperature.
Abstract:
A photonic measurement system, such as an atomic absorption spectrometer, includes source, sample and detection modules that are interconnected by fiber optic cables. A first set of fiber optic cables guides light from one or more light sources in the source module to each of at least two analysis chambers in the sample module. A second set of fiber optic cables guides light from the analysis chambers to a detector in the detection module. The detector provides to a processing sub-system signals that correspond to intensities of the guided light. One analysis chamber is selected to perform a sample analysis at a given time, and the processing sub-system processes the signals associated with the selected analysis chamber as measurement signals. The processing sub-system may further process the signals associated with a given non-selected analysis chamber as reference signals.
Abstract:
The present invention pertains to a method and apparatus for pressure sore detection. A modulated optical signal based on a digital code sequence is transmitted to human tissue. A temporal transfer characteristic is derived from the modulated optical signal. Tissue characteristics is determined based on the temporal transfer characteristic.
Abstract:
Fusarium infected grain is separated by comparing reflected and transmitted light at two wavelengths, one at which the light is substantially reflected and scattered the same by healthy and infected kernels, the other at which the light is reflected and scattered to a significantly greater degree by infected than healthy kernels. An apparatus having a rotating apertured cylinder, with a low internal vacuum, allows comparison of individual kernels. When comparison indicates that a kernel is infected, a lever dislodges it from the cylinder allowing it to fall into a receptacle for infected kernels. Kernels remaining on the cylinder are scraped off to fall into a receptacle for healthy kernels. Although results vary, to some extent depending on the degree of infection, approximately 90% of healthy kernels and 5% of infected kernels are deemed “healthy”, while approximately 10% of healthy kernels and 95% of infected kernels are deemed “infected,” reducing the level of infected kernels.
Abstract:
A multi-channel fluorescence measuring optical system and a multi-channel fluorescence sample analyzer using the optical system are provided. The multi-channel fluorescence measuring optical system, which irradiates light onto a plurality of sample channels and detecting fluorescence radiated from samples, includes: a light source; an integrator for giving the light irradiated from the light source a uniform intensity distribution; a sample holder having a plurality of sample channels on which the samples are mounted, wherein the samples are exited by the light emitted from the integrator; and a beam splitter between the integrator and the sample holder for dividing the incident light in a predetermined ratio. Since the light intensities of fluorescence images are detected using optical fiber bundles and photodiodes, the manufacturing cost can be greatly reduced, and the optical system can be miniaturized.
Abstract:
Techniques are described for the detection of multiple target species in real-time PCR (polymerase chain reaction). For example, a system comprises a data acquisition device and a detection device coupled to the data acquisition device. The detection device includes a rotating disk having a plurality of process chambers having a plurality of species that emit fluorescent light at different wavelengths. The device further includes a plurality of removable optical modules that are optically configured to excite the species and capture fluorescent light emitted by the species at different wavelengths. A fiber optic bundle coupled to the plurality of removable optical modules conveys the fluorescent light from the optical modules to a single detector. In addition, the device may control the flow of fluid in the disk by locating and selectively opening valves separating chambers by heating the valves with a laser.