Abstract:
PROBLEM TO BE SOLVED: To provide devices and methods for detecting plaque on a surface of the oral cavity. SOLUTION: The methods and devices detect plaque on a surface of the oral cavity to which a fluorescent agent capable of binding to plaque has been applied, whereby a radiation source emits incident radiation for contacting the surface, reflected light and fluorescent emission resulting from contact of the radiation with the surface is collected by an optical collector and conveyed by an optical pathway in the device, where the optical light signal of the reflected light and fluorescent emission is converted to an electrical signal, and where the electrical signals of the fluorescent emission and the reflected light are then mathematically manipulated to provide a compensated plaque value as a function of the distance from the optical collector and the surface of the oral cavity to which the fluorescent agent has been applied. COPYRIGHT: (C)2011,JPO&INPIT
Abstract:
A photoacoustic remote sensing system (PARS) for imaging a subsurface structure in a sample, has an excitation beam configured to generate ultrasonic signals in the sample at an excitation location; an interrogation beam incident on the sample at the excitation location, a portion of the interrogation beam returning from the sample that is indicative of the generated ultrasonic signals; an optical system that focuses at least one of the excitation beam and the interrogation beam with a focal point that is below the surface of the sample; and a detector that detects the returning portion of the interrogation beam.
Abstract:
A chemical and/or biochemical apparatus (10) for receiving a plurality of reaction vessels in which chemical and/or biochemical reactions may take place includes a thermal mount (14) having a plurality of wells (26) for receiving the reaction vessels (12), a thermal module (16) having a first side thermally coupled to the thermal mount (14), a first heat sink (18) thermally coupled to a second side of the thermal module, the heat sink (18) having a body and a plurality of thermally conductive fins (32) extending outwards from the body of the first heat sink (18), and a printed circuit board (54) having electronic components for controlling at least the thermal module (16), an excitation light source (62), and a light sensor (52). A first set of light waveguides (60) is provided for delivering excitation light to a reaction vessel, and a second set of light waveguides (38) is provided for receiving light from a reaction vessel and for delivering the light to the light sensor (52). The first heat sink (18) comprises an interior space (5) and the printed circuit board (54), the excitation light source (62), the light sensor (52) and the light waveguides (38, 60) are arranged within the interior space (5).
Abstract:
Title: Improvements in and relating to devices for receiving liquid samples A device for receiving a liquid sample may form part of a micro sampling head for an instrument such as a spectrophotometer. The device receives a liquid sample to be analysed by a process involving the passing of electromagnetic radiation through the sample, and comprises a light inlet guide (20) for directing electromagnetic radiation into the sample, a light receiving element (23) situated in an opposed relationship to the guide and spaced from the guide by a fixed distance to define a fixed path length gap (21), which is, in use, filled with the sample. In use, radiation is passed from the light inlet guide to the light receiving element (23), and the path length of radiation through the sample is defined by the gap (23). The device is open or openable to allow a droplet of sample to be deposited directly in the gap.
Abstract:
La présente invention concerne un système de spectroscopie (1) de fluorescence par corrélations temporelles pour l'analyse de particules dans un milieu (2), comprenant un moyen de détection (3) de la lumière (7) émise par les particules dans le milieu (2), le moyen (3) étant couplé à un guide d'onde (4), pour lequel le guide (4) comporte en son embout (4a) un moyen de confinement (4b;5) de la lumière (7) injectée dans le guide (4).
Abstract:
Instruments, devices and methods of analysis are provided which fully integrate a significant number of process steps in a continuous operation. Accurate positioning and full contact between components is also provided by the relative movement the designs allow. An effect interface between a low cost disposable cartridge or device and the instrument to process it is also detailed.
Abstract:
A method of analysis, instrument for analysis and device for use in such an instrument are provided, which perform a number of processes need to reach a useful result in the context of a wide variety of samples. The sequence of those processes being optimised. A device, instrument using the device and method of use are also provided which offer reliable performance of a heating based process, with minimal condensation and/or sample loss issues.
Abstract:
Instruments, devices and methods of analysis are provided which fully integrate a significant number of process steps in a continuous operation. Accurate positioning and full contact between components is also provided by the relative movement the designs allow. An effect interface between a low cost disposable cartridge or device and the instrument to process it is also detailed.