Abstract:
A system for obtaining a measurement of a species of interest. The system includes one or more reference regions, a sensor region, an exciter unit, a detector unit and a processing unit. The exciter unit exposes first and second chemical transducers in the reference and sensor regions, respectively, to an excitation light while they are exposed to reference environments and an analyte, respectively. The detector unit measures responses of the first and the second chemical transducers to the excitation light. The processing unit determines a compensation for aging of the first chemical transducer from a discrepancy between the measurements of the responses of the first chemical transducer and reference responses. The processing unit applies the compensation for aging to the measurement of the response of the second chemical transducer to obtain the measurement of the species of interest in the analyte.
Abstract:
A high-resolution fluorescence image in which an afterimage is suppressed is obtained, even when a fluorescence detection interval is shortened. Provided is a scanning observation apparatus including a scanning unit that spatially scans pulsed excitation light emitted from a light source at prescribed time intervals on a specimen; a fluorescence detecting unit that detects fluorescence generated by exciting a fluorescent substance inside the specimen with the excitation light scanned by the scanning unit, in synchronization with the emission of the excitation light; and a fluorescence correcting unit that subtracts, from a fluorescence intensity detected by the fluorescence detecting unit, an afterimage fluorescence component calculated on the basis of time-sequential fluorescence detected by the fluorescence detecting unit prior thereto, at each scanning position, to correct the fluorescence intensity at the scanning position.
Abstract:
The invention relates to a method for correcting an optical signal produced by a sample comprising the following steps: illuminating a surface of the sample by a first light beam, produced by a first light source, the said first light source being coupled to a first optical system, focusing the said first light beam in an object focal plane of the first optical system, the said object focal plane being situated, in the sample, at a measuring depth z from the surface of the sample; measuring, with a first photodetector, of a first optical signal backscattered by the sample in response to the first light beam, the first photodetector producing a first measured signal representative of the said first optical signal, a spatial filter being interposed between the first optical system and the first photodetector, the spatial filter comprising a window which transmits the said first optical signal towards the said first photodetector, the window being disposed in a conjugate focal plane of the object focal plane of the first optical system; wherein the method also comprises the following steps: determining an optical scattering property of the sample; applying a correction function to the first measured signal so as to generate a first corrected signal, the said correction function taking into account the said optical scattering property.
Abstract:
A line scan wafer inspection system includes a confocal slit aperture filter to remove sidelobes and enhance resolution in the scanning direction. A position detector associated with the slit aperture filter monitors and corrects illumination line image positions relative to the slit aperture to keep image position variations within tolerable limits. Each detector measures a line position and then uses the line position signal to adjust optical, mechanical, and electronic components in the collection path in a feedback loop. The feedback loop may be employed in a runtime calibration process or during inspection to enhance stability.
Abstract:
The present invention relates to a method for controlling a spectrometer for analyzing a product, the spectrometer including a light source including several light-emitting diodes having respective emission spectra covering in combination an analysis wavelength band, the method including steps of: supplying at least one of the light-emitting diodes with a supply current to switch it on, measuring a light intensity emitted by the light source by measuring a current at a terminal of at least another of the light-emitting diodes maintained off, determining, according to each light intensity measurement, a setpoint value of the supply current of each diode that is on, and regulating the supply current of each diode that is on so that it corresponds to the setpoint value.
Abstract:
Techniques are disclosed relating to analysis and reduction of crosstalk between signals. These techniques may be applicable in many fields, such as single-tube PCR or DNA melt analysis, PCR or melt data from neighboring wells of a multi-well plate, capillary electrophoresis data (e.g., DNA sequencing), gas chromatography, multispectral imaging, dual-color fluorescence correlation spectrometry, electrical crosstalk, etc. According to one embodiment, crosstalk between fluorescence signals from different species may be determined based on a correlation between the time derivatives of the fluorescence signals from the fluorescent species.
Abstract:
An optical detection apparatus for measuring detection chambers of a specimen cartridge includes: a light source unit including light sources which are arranged along a scan line on which the detection chambers are aligned to be scanned, and configured to emit light rays to the detection chambers; and an optical detector configured to detect the light rays having passed through corresponding detection chambers disposed on the scan line. The light sources include main wavelength light sources which are used for measuring samples disposed in the detection chambers, and a sub-wavelength light source which is used for correcting a measuring error.
Abstract:
This disclosure relates generally to a sampling device, and more particularly, a sampling device that facilitates spectroscopic measurements with a variable path length and the necessary software controlled algorithms and methods for such a device.
Abstract:
In order to solve a problem that a local optical characteristic-changed region inside an object cannot be accurately estimated, an object observing apparatus includes: a light intensity information acquiring unit that acquires light intensity information received by each light-receiving probe; a light intensity change information acquiring unit that acquires, for each probe set, light intensity change information, from reference light intensity information and light intensity information; an estimating unit that acquires three-dimensional optical characteristic-changed region information, using the light intensity change information; and an output unit that outputs the optical characteristic-changed region information; wherein the estimating unit includes: a correcting part that performs correction according to sensitivity attenuation in accordance with a depth; and a sparseness applying part that introduces sparseness for improving a space resolution, thereby acquiring the optical characteristic-changed region information. Accordingly, it is possible to accurately estimate a local optical characteristic-changed region inside an object.
Abstract:
A system and method for characterizing contributions to signal noise associated with charge-coupled devices adapted for use in biological analysis. Dark current contribution, readout offset contribution, photo response non-uniformity, and spurious charge contribution can be determined by the methods of the present teachings and used for signal correction by systems of the present teachings.