Abstract:
Methods and apparatus to improve the speed and reliability of decoders are presented herein. Namely, a priori knowledge of Walsh space information is used to increase the speed at which messages are decoded. In systems where control messages contain transmission parameters of concurrently transmitted packet data, a faster demodulation and decoding of control messages allows a receiver to demodulate the packet data sooner, so that a shorter buffer is needed to store the received packet data. The receiver uses the Walsh space from the previous successfully decoded message to first decode the current message. If the decoding attempt is unsuccessful, the receiver then uses a neighboring Walsh space to decode the current message.
Abstract:
A first detector receives a received signal and extracts the data signals from the received signal. A hard decision converter converts soft symbols outputted by the first detector into hard symbols. An interference canceller extracts the voice signals from the received signal. A second detector is connected to the output of the interference canceller, and extracts the individual voice signals. The second detector is a different detector type than the first detector.
Abstract:
Method and apparatus for minimizing the processing delay incurred by an IC receiver over conventional receivers in a CDMA cellular system are disclosed. The method and apparatus involve operating the conventional receiver and the IC receiver in parallel to each other. Data from the conventional receiver are then used to supplement data from the IC receiver in order to minimize the delays incurred by the IC receiver.
Abstract:
Spreading factor (SF) estimation in a code division multiple access (CDMA) spread spectrum system where the SF of the data channel may change on a frame-by-frame basis to reflect a change in the data rate for each corresponding frame. The SF estimation methods despread the data channel for all possible SF values, perform maximal ratio combining (MRC) when resolved multipaths occur, take the absolute value of the MRC results, and average these absolute values over many symbol periods to obtain decision statistics for the various SF's. The SF estimation methods then post-process these decision statistics and make a SF decision.
Abstract:
An apparatus and method for encoding/decoding a transport format combination indicator (TFCI) in a CDMA mobile communication system. In the TFCI encoding apparatus, a one-bit generator generates a sequence having the same symbols. A basis orthogonal sequence generator generates a plurality of basis orthogonal sequences. A basis mask sequence generator generates a plurality of basis mask sequences. An operation unit receives TFCI bits that are divided into a first information part representing biorthogonal sequence conversion, a second information part representing orthogonal sequence conversion, and a third information part representing mask sequence conversion and combines an orthogonal sequence selected from the basis orthogonal sequence based on the second information, a biorthogonal sequence obtained by combining the selected orthogonal sequence with the same symbols selected based on the first information part, and a mask sequence selected based on the biorthogonal sequence and the third information part, thereby generating a TFCI sequence.
Abstract:
Techniques for recovering data transmitted on a physical channel in which the channelization code is not known at the time of the data recovery. A modulated signal is received an processed to provide received samples. A hypothesized channelization code (e.g., an OVSF code in the W-CDMA system) is selected and used to process the received samples to generate partially processed symbols. The hypothesized channelization code is a “base” code that can be used to generate all possible channelization codes that may have been used for the physical channel. Intermediate results representative of the partially processed symbols are stored and, upon determination of the actual channelization code, further processed in accordance with the actual and hypothesized channelization codes to provide the final results.
Abstract:
A method for simultaneously receiving and processing multiple channels of data at independent rates which share a same frequency spectrum begins with receiving a multichannel data communication signal having multiple data channels at independent data rates on the same frequency spectrum. Next, selected channels of data of the received signal are separated and the data rate for each channel is identified. Then each separated channel of the received signal is decoded at an assigned data rate using a common decoding memory. Lastly, each separated channel is directed to a different decoding means and each decoding means is assigned a data rate responsive to the identification of data rates when the channels were separated.
Abstract:
A spreader (216) comprises a code generator (301) and exclusive OR circuitry (303). In the preferred embodiment of the present invention the code generator (301) generates a code having a length and value dependent upon the current transmission rate. This code is then exclusive OR'd with the incoming data stream to produce spread data.
Abstract:
A first detector receives a received signal and extracts the data signals from the received signal. A hard decision converter converts soft symbols outputted by the first detector into hard symbols. An interference canceller extracts the voice signals from the received signal. A second detector is connected to the output of the interference canceller, and extracts the individual voice signals. The second detector is a different detector type than the first detector.
Abstract:
A system, method, and receiver for receiving radio signals modulated according to different radio communication standards. Radio signals are received and downconverted to an intermediate frequency (IF) signal. An A/D-converter samples the IF signal at a sampling rate and digitizes the sampled signal into a digital signal. A channelizer filters out at least two modulated channels from the digital signal. A first ago channel is modulated according to a Time Division Multiple Access (TDMA) standard, and a second channel is modulated according to a Code Division Multiple Access (CDMA) standard. A first demodulating unit demodulates the TDMA channel, and a second demodulating unit demodulates the CDMA channel. Each of the demodulating units detects and, when needed, resamples each of the modulated channels individually, and delivers a corresponding demodulated channel. A Frequency Division Multiple Access (FDMA) channel may also be received and processed.