Abstract:
There is described an ink wiping system (100; 100′; 100″) of an intaglio printing press comprising a wiping tank (101) and a rotatable wiping roller assembly (102; 102*) supported on and partly located in the wiping tank (101) for wiping excess ink from the surface of a rotatable intaglio printing cylinder (80) of the intaglio printing press. The ink wiping system (100; 100′; 100″) comprises a wiping roller retracting device (150) which forms an integral part of the ink wiping system (100; 100′; 100″) and is adapted to be coupled to the wiping roller assembly (102; 102*) to move the wiping roller assembly (102; 102*) between a working position (W) where the wiping roller assembly (102; 102*) is supported on and partly located in the wiping tank (101) for cooperation with the intaglio printing cylinder (80) and a parking position (P) where the wiping roller assembly (102; 102*) is retracted out of the wiping tank (101) and away from the intaglio printing cylinder (80). In the working position (W) of the wiping roller assembly (102; 102*), the wiping roller retracting device (150) is coupled to the wiping roller assembly (102; 102*). The ink wiping system (100; 100′; 100″) further includes, at the parking position (P), a storage section (110) adapted to receive the wiping roller assembly (102; 102*) which is retracted by the wiping roller retracting device (150).
Abstract:
There is described method of processing printed sheets (100), especially sheets of printed securities, into individual documents (150), such as banknotes, each printed sheet (100) comprising an array of imprints arranged in a matrix of rows and columns. The method comprises the following steps : (i) pre-processing the printed sheets (100) by partly slitting each printed sheet (100) row-wise or column-wise to form slits (110) between adjacent rows or adjacent columns of imprints, slitting being performed in such a manner that the adjacent rows or adjacent columns of imprints are still attached to one another at edges of each thus pre-processed printed sheet (100′); (ii) stacking the pre-processed printed sheets (100′) so as to form sheet stacks (121, 122) comprising a predetermined number of pre-processed printed sheets (100′) stacked one upon the other; and (iii) processing the sheet stacks (121, 122) by cutting each sheet stack (121, 122) column-wise or row-wise along cutting lines (115) between adjacent columns or rows of imprints, cutting being performed along a direction perpendicular to the direction of the slits (110) and in such a manner that individual documents (150) are produced as a result. Also described is a system for carrying out this method.
Abstract:
There is described an intaglio printing press comprising (i) a stationary machine frame (01) supporting an intaglio printing cylinder (07) and an impression cylinder (06) contacting the intaglio printing cylinder (07), (ii) an inking system (12, 13, 16) for inking the intaglio printing cylinder (07), which inking system (12, 13, 16) comprises an ink-collecting cylinder (12) de-signed to contact the intaglio printing cylinder (07) and at least one inking device (13, 16) for supplying ink to said ink-collecting cylinder (12), and (iii) at least a first mobile carriage (11) supporting the ink-collecting cylinder (12), which first mobile carriage (11) is adapted to be moved with respect to the stationary machine frame (01) between a working position where the ink-collecting cylinder (12) contacts the intaglio printing cylinder (07) and a retracted position where the ink-collecting cylinder (12) is retracted away from the intaglio printing cylinder (07). The intaglio printing press further comprises a correcting and adjusting system (80) for correcting and adjusting a rotational position of the ink-collecting cylinder (12) with respect to a rotational position of the intaglio printing cylinder (07) following maintenance operations to ensure proper circumferential register between the ink-collecting cylinder (12) and the intaglio printing cylinder (07) in the working position of the first mobile carriage (11).
Abstract:
There is described a printed security feature (1) provided onto a printable substrate, which security feature includes a printed area (100) consisting of a multiplicity of adjacent rectilinear and/or curvilinear elements (110, 120) printed with a given spatial frequency. The rectilinear and/or curvilinear elements are printed with at least first and second inks which exhibit the same or substantially the same optical appearance when illuminated with visible white light, such that the security feature produces a first graphical representation when illuminated with visible white light, at least the first ink being an ink which responds to non-visible light excitation by producing a characteristic optical response differentiating the first ink from the second ink. The security feature produces a second graphical representation when illuminated with non-visible light, which second graphical representation exhibits a distinctive two-dimensional graphic element (B) which is revealed only when the security feature is illuminated with non-visible light. Inside boundaries (160) of the distinctive two-dimensional graphic element, a part (P3) of the rectilinear and/or curvilinear elements is printed with a combination
Abstract:
There is described an intaglio printing press (1; 1*) comprising a plate cylinder (8) carrying one or more intaglio printing plates, the plate cylinder (8) receiving ink from an inking system (9, 20, 23; 20*, 23*) having a plurality of chablon cylinders (23; 23*) transferring ink directly or indirectly onto the plate cylinder (8), the intaglio printing press (1; 1*) comprising an adjustment system acting on the chablon cylinders (23; 23*) in order to compensate elongation of the one or more intaglio printing plates. The adjustment system comprises, for each chablon cylinder (23; 23*), an adjustable drive unit, which adjustable drive unit (25) is interposed between the chablon cylinder (23; 23*) acting as a rotating output body of the adjustable drive unit (25) and a driving gear (100) acting as a rotating input body of the adjustable drive unit (25). The adjustable drive unit (25) is designed to allow selected adjustment of a rotational speed of the chablon cylinder (23; 23*) with respect to a rotational speed of the driving gear (100). In an adjusting state of the adjustable drive unit (25), driving into rotation of the chablon cylinder (23; 23*) is adjusted over each revolution of the chablon cylinder (23; 23*) by means of an adjustment motor (300) of the adjustable drive unit (25). In a non-adjusting state of the adjustable drive unit (25), the adjustment motor (300) is inoperative and driving into rotation of the chablon cylinder (23; 23*) is performed exclusively mechanically via the adjustable drive unit (25), the chablon cylinder (23; 23*) rotating at a same rotational speed as the driving gear (100).
Abstract:
There is described an ink wiping system (100) for an intaglio printing press comprising a rotatable wiping roller assembly (102) designed to wipe excess ink from the surface of a rotatable intaglio printing cylinder (80). The rotatable wiping roller assembly (102) comprises a rotatable hollow cylindrical body (110) having an outer surface (110a) positioned to wipe the surface of the printing cylinder (80), and a pressing device (130) disposed inside the cylindrical body (110) and designed lo exert pressure on an inner surface (110b) of the cylindrical body (110) and to allow adjustment of a wiping pressure between the cylindrical body and the intaglio printing cylinder (80). The pressing device (130) preferably comprises a plurality of pressing units (132) that are distributed axially along the inside of the hollow cylindrical body (110) to allow adjustment of the wiping pressure between the cylindrical body (110) and the intaglio printing cylinder at a plurality of axial positions along the length of the hollow cylindrical body (110).
Abstract:
There is described a device (1) for offline inspection and color measurement of printed sheets for the production of banknotes and like printed securities, comprising (i) a console (10) having a supporting surface (10a) for supporting a sample printed sheet (S), (ii) a multipurpose measuring apparatus (20), which multipurpose measuring apparatus (20) comprises multiple sensors (22, 23) including at least one camera (22) for taking images of selected portions of the sample printed sheet (S) and a color measurement sensor (23) for performing spectrophotometric, colorimetric, and/or densitometric measurements at selected locations on (22, 23) the sample printed sheet (S), (iii) a display (30) for displaying the images taken by the camera (22) and the measurements performed by the color measurement sensor (23), and (iv) a control and processing unit (40) coupled to the multipurpose measuring apparatus (20) and the display (30). The device (1) comprises a move-sensor beam (200) housing the multipurpose measuring apparatus (20), which moveable sensor beam (200) is displaceable along an x-axis over the supporting surface (10a) of the console (10) and over the entire surface of the sample printed sheet (S) located on the supporting surface (10a), the multiple sensors (22, 23) being mounted on a common sensor head (21) which is displaceable within the moveable sensor beam (200) along a y-axis so that the multipurpose measuring apparatus (20) can selectively take images of selected portions of the sample printed sheet (S) by means of the camera (22) or perform measurements at selected locations on the sample printed sheet (S) by means of the color measurement sensor (23). The control and processing unit (40) is configured to control displacement of the moveable sensor beam (200) along the x-axis and of the sensor head (21) along the y-axis.
Abstract:
There is described an intaglio printing press comprising a plate cylinder (8) carrying one or more intaglio printing plates (8c) and an impression cylinder (7) cooperating with the plate cylinder (8), a printing nip being formed between the plate cylinder (8) and the impression cylinder (7). The plate cylinder (8) and the impression cylinder (7) each comprise one or more cylinder pits (8a, 7a) and a corresponding number of cylinder segments (8b, 7b), the plate cylinder (8) and the impression cylinder (7) being in rolling contact with one another during printing operations along their respective cylinder segments (8a, 7b) when no cylinder pits (8a, 7a) are present at the printing nip. The intaglio printing press further comprises a monitoring system (150) designed to monitor a rolling condition of the impression cylinder (7) with respect to the plate cylinder (8) and to provide an indication as to whether or not the rolling condition corresponds to a desired rolling condition, the desired rolling condition being a rolling condition corresponding to true rolling of the impression cylinder (7) with respect to the plate cylinder (8) where no slippage occurs between a circumferential surface of the impression cylinder (7) and a circumferential surface of the plate cylinder (8). Also described is a method of monitoring operation of an intaglio printing press.
Abstract:
There is described an inspection system (10) for inspecting the quality of printed sheets which are transported by a sheet conveyor system comprising at least one sheet gripper system (3a, 3b) including a plurality of spaced-apart gripper bars (32) for holding the printed sheets by a leading edge thereof. The inspection system (10) comprises an optical quality control apparatus for carrying out inspection of a first side of the printed sheets while the printed sheets are being transported by the sheet gripper system (3b). The optical quality control apparatus includes a line camera (11) for scanning the first side of the printed sheets at an inspection location which is situated at a location proximate to a portion of the sheet gripper system (3b) where the gripper bars (32) transporting the printed sheets undergo a change of direction of displacement while the printed sheets are still being scanned by the line camera (11). The inspection system (10) further comprises a suction roller (50) that is placed in front of the optical path (B) of the line camera (11) along the path (A) of the printed sheets being transported by the sheet gripper system (3b), which suction roller (50) contacts a second side of the printed sheets opposite to the first side which is being scanned by the line camera (11), the suction roller (50) being driven at a selected circumferential speed to drive successive portions of the printed sheets being inspected by the quality control apparatus at a determined and controlled speed past the line camera (11).
Abstract:
There is described an inspection system (10) for inspecting the quality of printed sheets which are transported by a sheet conveyor system comprising at least one sheet gripper system (3a, 3b) including a plurality of spaced-apart gripper bars (32) for holding the printed sheets by a leading edge thereof. The inspection system (10) comprises an optical quality control apparatus for carrying out inspection of a first side of the printed sheets while the printed sheets are being transported by the sheet gripper system (3b). The optical quality control apparatus includes a line camera (11) for scanning the first side of the printed sheets at an inspection location which is situated at a location proximate to a portion of the sheet gripper system (3b) where the gripper bars (32) transporting the printed sheets undergo a change of direction of displacement while the printed sheets are still being scanned by the line camera (11). The inspection system (10) further comprises a suction roller (50) that is placed in front of the optical path (B) of the line camera (11) along the path (A) of the printed sheets being transported by the sheet gripper system (3b), which suction roller (50) contacts a second side of the printed sheets opposite to the first side which is being scanned by the line camera (11), the suction roller (50) being driven at a selected circumferential speed to drive successive portions of the printed sheets being inspected by the quality control apparatus at a determined and controlled speed past the line camera (11).