Method, based on composite modulation, of data transmission between power electronic devices without communication line

    公开(公告)号:US09755696B2

    公开(公告)日:2017-09-05

    申请号:US15310389

    申请日:2014-07-15

    CPC classification number: H04B3/54 H04L25/4902 H04L27/12

    Abstract: A method of data transmission between power electronic devices without a communication line involves generation of a digital signal in a data transmission process. The digital signal enables PWM modulation of specific data information via a composite modulation method. The composite modulation superimposes PWM modulation waves after modulating the PWM carrier frequency or conducting high-frequency modulation on the data. The composite modulation generates a PWM drive pulse signal which is transmitted to a power circuit via a main power electronic circuit to complete the data transmission process. In the data receiving process, signals are extracted on the voltage and current of a power line via software or hardware, and data demodulated to obtain the data information to complete the data receiving process.

    GRAVITY TYPE PORE PRESSURE DYNAMIC PENETRATION DEVICE FOR SHALLOW LAYER SEABED SOIL

    公开(公告)号:US20170233968A1

    公开(公告)日:2017-08-17

    申请号:US15503399

    申请日:2015-03-23

    CPC classification number: E02D1/027 G01L23/26 G01N3/34 G01N33/24

    Abstract: A gravity-type pore pressure dynamic penetration device for exploration of shallow-layer seabed soil includes a third drop hammer, a second drop hammer, a first drop hammer, a stable empennage, and a probe rod which are sequentially arranged from top to bottom. A sidewall friction sleeve is arranged outside a probe rod lower cylinder. A friction sleeve sensor is provided on an inner sidewall of the sidewall friction sleeve. A fast pore water pressure sensor, a conical tip pressure sensor, a temperature compensation sensor, and an inclinometer sensor are provided in the middle of the probe rod lower cylinder. A second pore water pressure sensor and an acceleration sensor are provided in the middle of a probe rod upper cylinder. The tail portion of the probe rod, that is, the upper portion of the probe rod upper cylinder is connected to the stable empennage.

    METHOD, BASED ON COMPOSITE MODULATION, OF DATA TRANSMISSION BETWEEN POWER ELECTRONIC DEVICES WITHOUT COMMUNICATION LINE

    公开(公告)号:US20170149473A1

    公开(公告)日:2017-05-25

    申请号:US15310389

    申请日:2014-07-15

    CPC classification number: H04B3/54 H04L25/4902 H04L27/12

    Abstract: A method of data transmission between power electronic devices without a communication line involves generation of a digital signal in a data transmission process. The digital signal enables PWM modulation of specific data information via a composite modulation method. The composite modulation superimposes PWM modulation waves after modulating the PWM carrier frequency or conducting high-frequency modulation on the data. The composite modulation generates a PWM drive pulse signal which is transmitted to a power circuit via a main power electronic circuit to complete the data transmission process. In the data receiving process, signals are extracted on the voltage and current of a power line via software or hardware, and data demodulated to obtain the data information to complete the data receiving process.

    Main Synchronization Sequence Design Method for Global Covering Multi-Beam Satellite LTE
    176.
    发明申请
    Main Synchronization Sequence Design Method for Global Covering Multi-Beam Satellite LTE 有权
    全球覆盖多波束卫星LTE的主同步序列设计方法

    公开(公告)号:US20160112973A1

    公开(公告)日:2016-04-21

    申请号:US14780096

    申请日:2013-06-20

    Abstract: Disclosed is a main synchronization sequence design method for global covering multi-beam satellite LTE, comprising the follow steps: extending a standard Zadoff-Chu sequence to a generalized Zadoff-Chu sequence so as to obtain an initial candidate main synchronization sequence set of more candidate sequences; gradually narrowing down the candidate main synchronization sequence set according to a selection standard of a main synchronization sequence to obtain a final candidate main synchronization sequence set; and obtaining a main synchronization sequence set with optimal eclectic performance and complexity from the final candidate main synchronization sequence set. According to the present invention, a main synchronization sequence with optimal eclectic performance and calculation complexity can be designed for a global covering same-frequency networking multi-beam satellite LTE system.

    Abstract translation: 公开了一种全球覆盖多波束卫星LTE的主同步序列设计方法,包括以下步骤:将标准Zadoff-Chu序列扩展到广义Zadoff-Chu序列,以获得更多候选的初始候选主同步序列集 序列; 根据主同步序列的选择标准逐渐缩小候选主同步序列集,以获得最终候选主同步序列集; 并且从最终候选主同步序列集合获得具有最佳折衷性能和复杂性的主同步序列集合。 根据本发明,可以为全球覆盖同频联网多波束卫星LTE系统设计具有最佳折衷性能和计算复杂度的主同步序列。

    Circuit for enhancing robustness of sub-threshold SRAM memory cell
    177.
    发明授权
    Circuit for enhancing robustness of sub-threshold SRAM memory cell 有权
    用于增强子阈值SRAM存储单元鲁棒性的电路

    公开(公告)号:US09236115B2

    公开(公告)日:2016-01-12

    申请号:US14369651

    申请日:2012-12-27

    CPC classification number: G11C11/419 G11C11/412 G11C11/417 H01L27/1104

    Abstract: A circuit for improving process robustness of sub-threshold SRAM memory cells serves as an auxiliary circuit for a sub-threshold SRAM memory cell. The output of the circuit is connected to PMOS transistors of the sub-threshold SRAM memory cell and substrate of PMOS transistors in the circuit. The circuit includes a detection circuit for threshold voltages of the PMOS transistors and a differential input and single-ended output amplifier. The circuit changes the substrate voltage of the PMOS transistors in the sub-threshold SRAM memory cell and the PMOS transistors in the circuit in a self-adapting manner by detecting threshold voltage fluctuations of PMOS and NMOS transistor resulted from process fluctuations and thereby regulates the threshold voltages of the PMOS transistors, so that the threshold voltages of the PMOS and NMOS transistors match. The circuit improves the noise margin of sub-threshold SRAM memory cells and the process robustness of sub-threshold SRAM memory cells.

    Abstract translation: 用于提高子阈值SRAM存储单元的工艺稳健性的电路用作子阈值SRAM存储单元的辅助电路。 电路的输出端连接到子阈值SRAM存储单元的PMOS晶体管和电路中PMOS晶体管的衬底。 该电路包括用于PMOS晶体管的阈值电压的检测电路和差分输入和单端输出放大器。 该电路通过检测来自过程波动的PMOS和NMOS晶体管的阈值电压波动,以自适应的方式改变子阈值SRAM存储单元中的PMOS晶体管的衬底电压和电路中的PMOS晶体管,从而调节阈值 PMOS晶体管的电压,使得PMOS和NMOS晶体管的阈值电压匹配。 该电路提高了亚阈值SRAM存储单元的噪声容限和子阈值SRAM存储单元的工艺稳健性。

    Noise current compensation circuit
    178.
    发明授权
    Noise current compensation circuit 有权
    噪声电流补偿电路

    公开(公告)号:US08922265B1

    公开(公告)日:2014-12-30

    申请号:US14369652

    申请日:2012-12-27

    CPC classification number: H03K3/013 G11C11/417 G11C11/419 H03K3/012

    Abstract: Disclosed is a noise current compensation circuit. The circuit is provided with two input and output terminals A and B, and two control terminals CON and CONF. The control terminals control a work mode (work state and pre-charge state) of the compensation circuit. The compensation circuit consists of 7 PMOS transistors and 8 NMOS transistors. In the normal work state, by detecting changes of potential change rate of two signal lines in an original circuit, the noise current compensation circuit automatically enables one end of the original circuit that discharges slowly to discharge a signal more slowly, and enables one end of the original circuit that discharges rapidly to discharge a signal more rapidly, thus eliminating the influence of the noise current on the circuit and providing assistance for correct identification of subsequent circuit signals. The current compensation circuit can be used for an SRAM bit line leakage current compensation circuit, because the existence of a large leakage current on the SRAM bit line leads to the decreasing of a voltage difference between two ends of the bit line, resulting in that a subsequent circuit cannot correctly identify a signal.

    Abstract translation: 公开了一种噪声电流补偿电路。 该电路设有两个输入和输出端子A和B,以及两个控制端子CON和CONF。 控制端子控制补偿电路的工作模式(工作状态和预充电状态)。 补偿电路由7个PMOS晶体管和8个NMOS晶体管组成。 在正常工作状态下,通过检测原始电路中两根信号线的电位变化率的变化,噪声电流补偿电路自动使缓慢放电的原电路的一端缓慢放电,使一端 原始电路快速放电以更快地放电信号,从而消除噪声电流对电路的影响,并为后续电路信号的正确识别提供帮助。 电流补偿电路可以用于SRAM位线漏电流补偿电路,因为SRAM位线上存在大的漏电流导致位线两端之间的电压差减小,导致 后续电路无法正确识别信号。

    ANALYTICAL METHOD FOR DYNAMIC ANALYSIS OF NATURAL GAS NETWORK

    公开(公告)号:US20250165664A1

    公开(公告)日:2025-05-22

    申请号:US19026349

    申请日:2025-01-16

    Abstract: Disclosed is an analytical method for dynamic analysis of a natural gas network in the field of energy system modeling and operational analysis, which includes establishing adynamic model of natural gas transmission according to the conservation equations, and reconstructing the dynamic model into the equations in a heat conduction equation form. The present disclosure directly constructs an analytical method for dynamic analysis of a natural gas network, avoiding approximation errors, numerical dispersion, and dissipation compared with the traditional numerical methods. The discretization process is avoided during the solution, greatly improving the computational efficiency and solution accuracy of dynamic analysis of the natural gas network.

    HYSTERETANCE COMPONENT AND APPLICATION METHOD THEREOF

    公开(公告)号:US20250157726A1

    公开(公告)日:2025-05-15

    申请号:US19021098

    申请日:2025-01-14

    Abstract: The present disclosure relates to a hysteretance component, which is designed based on its definition, calculation formulas, and port characteristics. By increasing or decreasing hysteretance components in a magnetic circuit, the intensity and effect magnitude of magnetic hysteresis in a vector magnetic circuit can be estimated and controlled from the perspective of magnetic circuit, allowing the vector state of a magnetic flux to be consistent with the desired state. Based on this, an application method is proposed, involving that a target magnetic circuit is formed by connecting reluctance, magductance, and hysteretance components in series, and magnetic circuit parameters of the three components are utilized to quantitatively express magnetization, eddy current, and magnetic hysteresis phenomena, enabling technicians to selectively alter the operating characteristics of the magnetic circuit, vector magnetic quantities, and power of the magnetic circuit by adjusting the parameters.

Patent Agency Ranking