Abstract:
A surface cleaning apparatus having an outer surface and comprises a dirt inlet, a handle, a cyclone separator having a cyclone separator interior and an outer wall having an inner surface, the cyclone separator comprising a cyclone chamber and a dirt collection chamber, the dirt collection chamber and the cyclone chamber each having an outer wall, the surface cleaning apparatus is constructed such that the cyclone separator interior is visible from a position exterior to the surface cleaning apparatus, an illumination member positioned to provide illumination to at least a portion of the cyclone separator interior, and a fluid flow motor.
Abstract:
A reproduction is prepared wherein the length of the reproduction is varied by one scale factor and the deeps of the image produced in the reproduction is varied by a second scale factor. The reproduction may be, prepared from a three dimensional article or a painting, art work or other two dimensional member having a topography in the surface thereof (such as brush strokes) or from a two dimensional substrate which has a picture thereon without any topography wherein the topography which is applied to the reproduction is prepared based upon computer interpretation of the objects present in the picture.
Abstract:
A cyclone separator assembly comprises at least one cyclone casing defining a cyclone chamber. The cyclone casing comprises a fluid inlet, a separated material outlet, and a fluid outlet. A separated material chamber is in communication with the separated material outlet. The cyclone chamber is openable by movement of a first movable portion, and the separated material chamber is openable by movement of a second movable portion separate from the first movable portion. A surface cleaning apparatus utilizing this construction is also provided. This construction is particularly useable if the separated material chamber is aligned with and below the cyclone chamber. Accordingly, the cyclone chamber and the separated material chamber may be sequentially or concurrently opened.
Abstract:
A household appliance incorporating an electrolyzer for electrolysis of water to H2 and O2 and an electrolyzer therefor. The appliance may include a burner for the hydrogen produced and an electric conductive member to provide household current to the electrolyzer. The electrolyzer comprises an outer housing defining a chamber which houses at least one cathode and at least one anode. The electrolyzer may comprise a plurality of field electrodes and the field electrodes may comprise first and second field electrodes which are electrically connected together and spaced apart to define an intra cell gap. Field electrodes may then be spaced apart to define an inter cell gap between electrodes of adjacent field electrodes. At least one of the anode and cathode may be connected to an electrically conductive member that is molded in situ in the housing and at least some of the electrodes may be configured to dimensionally stabilize the electrodes during operation of the electrolyzer. The number of field electrodes may be from 40 to 60 if a voltage of 120 V is supplied to the electrolyzer, 80 to 120 if the voltage is 240 V, or 4 to 6 if the voltage is 12 V. The gap between adjacent electrodes may vary between top and bottom and the electrolyzer may incorporate a plastic heat sink.
Abstract:
A vacuum cleaner comprises a cleaner head adapted for movement over a surface and having a dirty air inlet; a handle for moving the cleaner head over the surface; a cyclone chamber having a cyclonic flow region, a fluid inlet downstream from the dirty air inlet and a fluid outlet; a particle receiving chamber having a door and an outer wall; a plate positioned between the cyclone chamber and the particle receiving chamber; and, a motor for causing the air to flow through the vacuum cleaner from the dirty air inlet to a vacuum cleaner air outlet.
Abstract:
A vacuum cleaner is provided having improved pressure loss characteristics. A fluid supply conduit in flow communication with an inlet to a cyclone is integrally formed as part of a cyclone bin. The present invention may be adapted for use with cyclonic separation devices of all types, including single- and multi-stage cyclonic separators.
Abstract:
A particle separation member is provided for use with a cyclone separator. The particle separation member divides the separator into a cyclone chamber and a particle receiving chamber. The cyclone chamber and the particle receiving chamber communicating via a plurality of apertures in the particle separation member.