Abstract:
In a method for automated driving operation of a motor vehicle, the following are performed: a standard trajectory is ascertained, which implements a vehicle control according to the destination setting predefined by the driver and the current vehicle environment; a safety trajectory is ascertained, which implements safe stopping of the vehicle in the event of an emergency as a function of the current vehicle environment; the standard trajectory is supplied to a first control device, by which signals are forwarded to vehicle actuator devices for control of the vehicle on the basis of the standard trajectory; and the safety trajectory is supplied to a second control device, by which signals are able to be forwarded to vehicle actuator devices for the vehicle control on the basis of the safety trajectory in the safety case when the automated driving operation is not ensured.
Abstract:
The invention provides a driver assistance method, comprising the steps of: sensing a vehicle's state and the environment, on the basis of sensing output signals, determining whether a critical state of the vehicle is to be expected in the future, if yes, determining a total amount and a time duration of an activation of at least one vehicle actuator required in order to avoid occurrence of the critical state, the activation being of a nature which can be sensed by the driver of the vehicle, and partially performing, by a control module, the activation, i.e. for a portion of the amount and/or a portion of the time duration of the determined total amount and time duration.
Abstract:
A vehicle control apparatus is equipped with a vehicle velocity detecting unit that detects a vehicle velocity of a driver's own vehicle, and an automatic brake control unit configured to carry out an automatic brake control process for causing a braking force to be generated automatically in the wheels without reliance on a braking operation when the vehicle is involved in a collision. The automatic brake control unit makes the braking force to the wheels smaller as the vehicle velocity becomes higher after the vehicle collision.
Abstract:
A collision mitigation apparatus includes an object detecting section for detecting a collision object present in front of an own vehicle on which the collision mitigation apparatus is mounted, a drive assisting section that performs drive assist for avoiding a collision between the collision object detected by the object detecting section and the own vehicle, or mitigate damage to the own vehicle due to the collision, a reliability determining section for determining reliability of detection result of the object detecting section, and a timing setting section for setting start timing to start the drive assist by the drive assisting section in accordance with the reliability determined by the reliability determining section.
Abstract:
A vehicle brake apparatus capable of preventing abnormal vibration due to thickness variations in a disc rotor includes a motor drive unit configured to control the motor which presses the brake pad against the disc rotor, a brake pressure detection unit for detecting a braking pressure for pressing the brake pad, and a wheel speed sensor for detecting a rotation speed of the disc rotor. If an amount of variation in the detection values detected by the brake pressure detection unit during one rotation of the disc rotor exceeds a variation amount determination threshold value and a detection value variation frequency has a correlation with the rotation speed of the disc rotor and the detection value variation frequency exceeds a variation frequency determination threshold value, the motor drive unit controls the motor in inverted phase to the variation in the detection values.
Abstract:
In a method for setting a brake system of a vehicle, braking force is built up automatically in the event of a collision. In the process, the position of the collision on the vehicle is determined and the build-up of braking force is implemented as a function of the position of the collision.
Abstract:
A collision mitigation apparatus includes an object detecting section for detecting a collision object present in front of an own vehicle on which the collision mitigation apparatus is mounted, a drive assisting section that performs drive assist for avoiding a collision between the collision object detected by the object detecting section and the own vehicle, or mitigate damage to the own vehicle due to the collision, a reliability determining section for determining reliability of detection result of the object detecting section, and a timing setting section for setting start timing to start the drive assist by the drive assisting section in accordance with the reliability determined by the reliability determining section.
Abstract:
A method for controlling an emergency braking system of a motor vehicle having a stability control system when the stability control system is deactivated or placed in a reduced mode. The method includes the step of determining whether the stability control system is in a deactivated or reduced mode and keeping the automatic emergency braking system active even if the stability control system is deactivated or in a reduced mode. The system includes temporarily activating the stability control system if a hazardous situation exists requiring generation of an emergency braking command.
Abstract:
An enhanced stability control system (200) for a vehicle includes a vehicle status sensor that generates a sensor signal. A driver input sensor that generates an input signal. A controller (214) may disable normal yaw stability control operation and enable body-force-disturbance (BFD) yaw stability control (YSC) operation, which includes at least partially reducing response functions of the normal yaw stability control associated with the input signal, in response to the sensor signal and performing BFD-YSC functions to achieve desired control performance upon the detection of BFD reception. The controller (214) may also or alternatively compare the sensor signal to a threshold and detect an improperly functioning/inoperative vehicle status sensor. The controller (214) disregards information associated with the improperly functioning/inoperative vehicle status sensor, and continues to perform enhanced yaw stability control operations.
Abstract:
A vehicle brake apparatus capable of preventing abnormal vibration due to thickness variations in a disc rotor includes a motor drive unit configured to control the motor which presses the brake pad against the disc rotor, a brake pressure detection unit for detecting a braking pressure for pressing the brake pad, and a wheel speed sensor for detecting a rotation speed of the disc rotor. If an amount of variation in the detection values detected by the brake pressure detection unit during one rotation of the disc rotor exceeds a variation amount determination threshold value and a detection value variation frequency has a correlation with the rotation speed of the disc rotor and the detection value variation frequency exceeds a variation frequency determination threshold value, the motor drive unit controls the motor in inverted phase to the variation in the detection values.