Abstract:
A method of controlling a elevator installation with several elevator cages per elevator shaft, wherein a destination call to a desired destination story is actuated on a call input story by at least one passenger and at least one most favorable call allocation for transport of the passenger by the elevator cage from a start story to a destination story is determined for the destination call by at least one destination call control. If at least one disadvantage parameter is set, at least one disadvantage-free call allocation for transport of the passenger by the elevator cage from a start story to a destination story is determined by the destination call control, in which it is possible the start story and call input story or the destination story and desired destination correspond.
Abstract:
An elevator system includes: a destination call registration device which accepts an operation of registering a destination call by specifying a destination floor; an exit floor selection part provided in the destination call registration device and by use of which a user selects an exit floor provided with an exit of a building as a destination floor of the destination call; an exit floor determination part which determines, on the basis of predetermined conditions, which floor is the exit floor from candidates for an exit floor which are set beforehand as floors capable of being selected as the exit floor among plural floors of the building; and a destination call registration part which registers the destination call in which the specific floor determined as the exit floor by the exit floor determination part is a destination floor in the case the exit floor selection part is operated by a user.
Abstract:
An elevator has an elevator car supporting frame that can travel in a travel space provided for a journey of the elevator car supporting frame. The elevator installation is also provided with a first elevator car and a second elevator car arranged on the elevator car supporting frame. Furthermore, a hydraulic moving element is arranged in a lower end region of the travel space. In this way, the first elevator car can be moved in relation to the second elevator car, by the moving device, in the lower end region of the travel space.
Abstract:
An elevator system comprises at least two independently operable elevator cars in each of a plurality of elevator shafts within a building. The elevator system can include at least one first elevator shaft having a first and a second region, with the first region extending from a ground level to sub-ground levels, and with the second region extending from the ground level to a top floor. A first elevator car may move within the first region and a second elevator car may move within the second region, in the same shaft independently of each other.
Abstract:
An evacuation support system for a double-deck elevator allows people stranded in a building to evacuate to an evacuation floor upon an occurrence of a fire in the building including a plurality of floors. The evacuation support system includes an evacuation support apparatus including a rescue floor setting mechanism, and a double-deck elevator including a connected car including an upper car and a lower car which are vertically connected to each other. The rescue floor setting mechanism determines two adjacent floors among respective floors satisfying a predetermined condition as candidate rescue floors and sets, based on a floor on which the fire occurs, at least any one of the candidate rescue floors as the rescue floor. The double deck elevator performs an evacuation operation for moving the connected car in a reciprocating manner between the rescue floor and the evacuation floor based on a command from the evacuation support apparatus.
Abstract:
An elevator system comprises at least two independently operable elevator cars in each of a plurality of elevator shafts within a building. The elevator system comprises at least one first elevator shaft having a lower first and a lower second region, where a first elevator car moves within the lower first region of the first elevator shaft and a second elevator car moves within the lower second region. The first and second elevators are moveably controlled independently of each other within the first shaft. The system also includes at least one second elevator shaft having an upper first and an upper second region, where a third elevator car moves within the upper first region of the second elevator shaft and a fourth elevator car moving within the upper second region. The third and fourth elevator cars also are moveably controlled independently of each other.
Abstract:
A method for allocating destination calls in an elevator system, the system including at least one multi-deck elevator, where the passenger gives his/her destination floor by means of a destination call device at the beginning of the journey route, thereby defining the staffing point and final point of the passenger's journey route in the elevator system. The method includes the steps of generating possible route alternatives from the staffing point to the final point of the journey route, determining a cost function containing at least one travel time term, determining the value of the travel time term corresponding to each route alternative in the cost function, calculating the total cost of each route alternative by using the cost function, allocating for the passenger the route alternative that gives the minimum total cost, and guiding the passenger to a waiting lobby and/or elevator consistent with the route alternative allocated.
Abstract:
An elevator installation for zonal operation in a building, a method for zonal operation of such an elevator installation and method for modernization of an existing elevator installation, in which the building is divided into several zones. The elevator installation includes several elevators for the transport of persons/goods in cages. A zone is associated each elevator. At least one changeover storey for the changing over of persons/goods between cages of different zones is arranged between the zones. At least one elevator has at least two cages which are arranged one above the other and which are movable independently of one another at a pair of guide rails.
Abstract:
An elevator system comprises at least two independently operable elevator cars in each of a plurality of elevator shafts within a building. The elevator system comprises at least one first elevator shaft having a lower first and a lower second region, where a first elevator car moves within the lower first region of the first elevator shaft and a second elevator car moves within the lower second region. The first and second elevators are moveably controlled independently of each other within the first shaft. The system also includes at least one second elevator shaft having an upper first and an upper second region, where a third elevator car moves within the upper first region of the second elevator shaft and a fourth elevator car moving within the upper second region. The third and fourth elevator cars also are moveably controlled independently of each other.
Abstract:
A device for controlling a elevator installation with multiple deck cars which are simultaneously accessible at a main stopping point by different main stopping floors includes a call registering device by which a passenger can input a destination floor. In order to enable a more rapid filling of the building, a conversion unit responds to the destination call travel orders already allocated to and/or demanded of the multiple car having the deck which is to be allocated to the passenger to minimize the number of stops of the car. An indicating device indicates to the passenger the allocated car deck and/or the main stopping floor thereof.