Abstract:
The properties of a thermoformed polymeric article are modified by incorporation of an additive in a thermoplastic/thermoplastic elastic host matrix. The additive comprises a polydispersed hyperbranched polymer (HBP) or a branched monodispersed dendritic polymer (DP). The HBP or DP is linked to a plurality of oligomer chains. The additive migrates to the surface of the article during the thermoforming process.
Abstract:
A coating composition includes a flexible hyperbranched polyol preparable by (a) reacting a polyol comprising at least three hydroxyl groups with an aliphatic dicarboxylic acid having from 6 to 36 carbon atoms or an esterifiable derivative of the aliphatic dicarboxylic acid to form a hydroxyl-functional first intermediate product; (b) reacting the first intermediate product with a cyclic carboxylic acid anhydride to form a carboxylic acid-functional second intermediate product; and (c) reacting the second intermediate product with an epoxide-functional compound having one epoxide group to form the hyperbranched polyol. The coating composition may be cured to a coating layer having excellent flexibility.
Abstract:
The present invention relates to a curable antistatic primer composition, comprising: (d) at least one polyalkylene oxide polymer; (e) at least a Lithium salt; (f) at least an amorphizer selected from at least a dendritic polymer. The present invention also relates to an optical article having at least one surface comprising an antistatic primer coating obtained by depositing on a substrate and curing said composition, and its production method.
Abstract:
A film-forming composition including a triazine ring-containing hyperbranched polymer with a repeating unit structure Indicated by formula (1), and inorganic micro particles is provided. This enables the provision of a film-forming composition capable of hybridizing without reducing dispersion of the inorganic micro particles in a dispersion fluid, capable of depositing a coating film with a high refractive index, and suitable for electronic device film formation. In the formula, R and R′ are mutually independent and indicate a hydrogen atom, an alkyl group, an alkoxy group, an aryl group, or an aralkyl group, and Ar indicates a divalent organic group including either an aromatic ring or a heterocyclic ring, or both.
Abstract:
The present invention relates to quick-drying two-component polyurethane coating compositions, to processes for preparing them, and to their use.
Abstract:
Mechanisms for coating surfaces of materials, the resulting coated materials, and solutions for use in material-coating processes are described. Triblock molecule components may be selected for desired properties. When applied in solution to a material, the molecules self-assemble into similarly oriented micro- or nanostructures coating the surface of the material. Various molecule properties can be tailored to produce a range of desirable surface coating properties. The surface coating may optionally be self cleaning if selected to be appropriately hydrophobic, allowing water and particulates to roll off of the surface with minimal friction.
Abstract:
An oxygen-scavenging composition is provided that includes an oxygen-scavenging polymer and a catalyst. The oxygen-scavenging polymer, which in preferred embodiments is suitable for use in packaging articles, is a dendritic polymer having one or more oxygen-scavenging groups.
Abstract:
The present invention relates to surface modification of reverse osmosis membranes to introduce antifouling properties without compromising the separation properties of the original membranes. This approach utilizes: providing a coated membrane surface having enhanced hydrophilic characteristics that prevents the biofoulants from settling; have a surface that consists of hydrophilic brushes that unsettle any biofoulants that get through; and having antimicrobial ions present in the membrane coatings and able to remove or minimize any remaining biofoulants without leaching into the permeate. These coatings are made using dendritic polymers such as hyperbranched polymers or dendrimers.