Abstract:
A window assembly includes an electro-optic element which has a first substantially transparent substrate defining first and second surfaces. The second surface includes a first electrically conductive layer. A second substantially transparent substrate defines third and fourth surfaces. The third surface includes a second electrically conductive layer. A primary seal is disposed between the first and second substrates. The seal and the first and second substrates define a cavity therebetween. An electro-optic medium is disposed in the cavity. The electro-optic medium is switchable such that the electro-optic element is operable between substantially clear and darkened states. An absorptive layer is positioned on the fourth surface of the electro-optic element and a reflective layer is positioned on the absorptive layer.
Abstract:
An array substrate, a manufacturing method thereof and a display device are disclosed. The array substrate includes: a substrate; a plurality of pixel units provided on the substrate, each of the pixel units including a plurality of functional layers; and a light shielding assembly arranged between adjacent pixel units. The light shielding assembly including: a light shielding layer; a light absorption layer overlaid on the light shielding layer; and an antireflection layer overlaid on the light absorption layer. By means of providing an antireflection layer the light shielding assembly, it can decrease the reflection of the external ambient light on the light shielding assembly, thereby improving the display contrast and the image display quality.
Abstract:
The present application discloses a conductive layer in a semiconductor apparatus, comprising a metal sub-layer and an anti-reflective coating over the metal sub-layer for reducing light reflection on the metal sub-layer; wherein the anti-reflective coating comprises a light absorption sub-layer on the metal sub-layer for reducing light reflection by absorption and a light destructive interference sub-layer on a side of the light absorption layer distal to the metal sub-layer for reducing light reflection by destructive interference; and the metal sub-layer is made of a material comprising M1, wherein M1 is a single metal or a combination of metals; the light absorption sub-layer is made of a material comprising M2OaNb, wherein M2 is a single metal or a combination of metals, a>0, and b≧0; the light destructive interference sub-layer is made of a material comprising M3Oc, wherein M3 is a single metal or a combination of metals, and c>0; the light absorption sub-layer has a refractive index larger than that of the light destructive interference sub-layer.
Abstract:
An optical semiconductor element includes a ring modulator, and a light absorbing material provided at a position apart from a path for a modulated light which is guided by the ring modulator, the light absorbing material absorbing a light leaked out of a ring waveguide of the ring modulator, and increasing a temperature of the ring waveguide.
Abstract:
A display device and a manufacturing method are provided. The display device includes a blue light backlight source and a liquid crystal display panel, and the liquid crystal display panel comprises a first substrate, a second substrate. The first substrate or the second substrate includes a color filter layer which includes a black matrix pattern and a red pixel pattern and a green pixel pattern. The red pixel pattern and the green pixel pattern are quantum dot material thin film patterns respectively emitting red light and green light under the excitement of blue light.
Abstract:
An optical waveguide device in which optical characteristics are less degraded even when a branch angle in a Y branch portion of an optical waveguide is great is provided.In an optical waveguide device in which an optical waveguide is formed on a substrate, the optical waveguide includes a first branch portion which branches light into two light rays at a branch angle of 1/35 rad or more, a second branch portion (not illustrated) and a third branch portion (not illustrated) are arranged to be connected to each of two branched waveguides branched from the first branch portion, a radiation light guiding waveguide is arranged between the two branched waveguides of the first branch portion, and guides radiation light radiated from between the two branched waveguides at the first branch portion to the outside of the optical waveguide, and an optical termination portion (an electrode) which absorbs the guided radiation light or emits the guided radiation light to the outside of the substrate is arranged in a termination portion of the radiation light guiding waveguide.
Abstract:
An adaptive photo thermal lens comprising at least one cell, each cell provided with at least one photo absorbing particle, a thermo-optical material in thermal contact with the cells and at least one controllable light source for illuminating the photo absorbing particles, the light source having at least one spectral component which can be absorbed by the photo-absorbing particles and being controllable in wavelength and/or power and/or polarisation.
Abstract:
A liquid crystal display device includes a liquid crystal panel including first and second substrates and a liquid crystal layer between the first and second substrates; a backlight unit under the liquid crystal panel; a bottom frame including a horizontal surface and first, second, third, and fourth side surfaces, the first side surface corresponding to a first edge of the liquid crystal panel and being opposite to the second side surface, wherein the liquid crystal panel has a size larger than the bottom frame such that a side of the liquid crystal panel protrudes beyond the bottom frame; a main frame including a first guide portion corresponding to the first edge and a second guide portion corresponding a second edge of the liquid crystal panel opposite to the first edge; and an adhesive covering the side of the liquid crystal panel and an outer side of the third and fourth side surfaces.
Abstract:
A display panel of a display apparatus including the display panel and a backlight unit configured to provide light to the display panel, the display panel including: an upper substrate; a lower substrate; a liquid crystal layer between the upper substrate and the lower substrate; a wire grid polarizer (WGP) provided on at least one from among the lower substrate and the upper substrate and configured to filter light radiated from the backlight unit; and an antireflection layer provided on the upper substrate and configured to substantially prevent reflection of external light from an external source on a surface of the upper substrate. The WGP may include a light absorption layer configured to absorb the external light which passes through the antireflection layer.
Abstract:
The invention relates to an apparatus for generation of electromagnetic radiation, having a pump light source that emits an excitation radiation at a first wavelength, and having an optical waveguide that generates frequency-converted radiation at a second and a third wavelength, by means of degenerate wave mixing, from the excitation radiation of the pump light source.