Abstract:
On the transmitting side a spread modulated signal that has undergone spread spectrum processing and an information modulated signal that has not undergone spread spectrum processing are multiplexed in a same frequency band. On the receiving side the specific modulated signal is first demodulated by a spread spectrum demodulation section 1803, then a replica signal of the specific modulated signal is generated by a spread spectrum modulated signal regeneration section 1805, and the information signal that has not undergone spread spectrum processing is extracted by eliminating the replica signal from the multiplex signal. By this means, even when a large number of information signals are transmitted in a same frequency band, these signals can be separated and demodulated satisfactorily on the receiving side.
Abstract:
A plurality of communication signals have differing spreading codes. Each communication has an associated code comprising chips. For each chip of each communication, a vector of that chip convolved with an impulse response is produced. For each communication, support blocks comprising the chip vectors are produced. A number of the chip vectors in a support block is based on that communication's spreading factor. A system response matrix is assembled. The system response matrix has symbol sub-matrices. Each symbol sub-matrix comprises a support block from each communication. Data of the communications is detected using the symbol response matrix.
Abstract:
A despreading section 104 outputs a signal indicative of the number of paths through which despreading is performed to a likelihood calculating section 108. The fD detecting section 107 detects Doppler frequency (fD) that is a fading variation of the propagation path between each communication terminal apparatus and a base station apparatus from the despread signal. A likelihood calculating section 108 calculates likelihood of a report value transmitted from each communication terminal apparatus based on the number of paths which despreading is performed and the Doppler frequency. A transmission destination deciding section 151 decides a communication terminal apparatus that transmits a high-speed downlink packet based on a determination value obtained by multiplying the report value by the likelihood. A modulation scheme deciding section 152 decides an encoding rate of the high-speed downlink packet and a modulation scheme thereof based on the determination value. Accordingly, in high-speed downlink packet access, the error included in the report value is considered to perform transmission, making it possible to attain a reduction in the number of retransmission, improvement in transmission efficiency, and an increase in system capacity.
Abstract:
A method for simultaneously receiving and processing multiple channels of data at independent rates which share a same frequency spectrum begins with receiving a multichannel data communication signal having multiple data channels at independent data rates on the same frequency spectrum. Next, selected channels of data of the received signal are separated and the data rate for each channel is identified. Then each separated channel of the received signal is decoded at an assigned data rate using a common decoding memory. Lastly, each separated channel is directed to a different decoding means and each decoding means is assigned a data rate responsive to the identification of data rates when the channels were separated.
Abstract:
Method and apparatus for performing transmission data rate allocation in a high speed wireless communications network. A macro control loop with the network of base stations on one side and all the subscriber stations on the other side. Subscriber station selects a rate based on the amount of data queued for transmission (100). Adjusts this rate based on the available power headroom of the subscriber station (102). This adjusted transmission rate is then adjusted again to account for protection of base stations in the candidate set of the subscriber station (104). This rate is then adjusted in accordance with busy tone signals indicative of the loading conditions of active set base stations of the subscriber station (108). The base stations react to these action by refreshing measurements of their instantaneous traffic load and providing feedback in the form of soft busy tones. The algorithm is named Closed Loop Resource Allocation.
Abstract:
A spread spectrum base station receives a multichannel data communication signal. The multichannel data communication signal has multiple data channels at independent data rates on a same frequency spectrum. Selected channels of data of the received signal are separated and the data rate for each channel identified. Each separated channel is decoded at an assigned data rate. A common decoding memory is shared.
Abstract:
A spread spectrum mobile station receives a multichannel data communication signal. The multichannel data communication signal has multiple data channels at independent data rates on a same frequency spectrum. Selected channels of data of the received signal are separated and the data rate for each channel identified. Each separated channel is decoded at an assigned data rate. A common decoding memory is shared.
Abstract:
Processing of a received code division multiple access, CDMA, burst (405) when a spreading factor of the CDMA burst (405) has been changed from an allocated spreading factor (SF0) to a new spreading factor (SFn) The received burst (405) is processed with a CDMA detector (310), using the allocated spreading factor (SF0), to provide a CDMA detector output; the new spreading factor (SFn) of the burst is determined; and the CDMA detector output is decimated by a factor determined from the new spreading factor (SFn). The decimator may be a FIR decimator (315) and tap weights may be determined using the values of the new spreading factor (SFn) and the allocated spreading factor (SF0) Application in a Node B (150A) of a UMTS system (100), particularly in UTRA TDD mode, for processing received uplink communication is described.
Abstract:
A single, common correlation filter (CF) core is provided in a wireless system using CDMA. A plurality of channels with different data rates are provided in the wireless system. The channels provided in the wireless system include the access channel, the maintenance channel, and the traffic channel in which information (e.g., pilot or data symbols or both) is transmitted at the tier 1, tier 2 and tier 3 rates. The data rate for transmitting the information is programmable by digital signal processor (DSP). A user-unique code, such as a PN code, is applied to the information being transmitted in the channels of the wireless system. The information is QPSK modulated and transmitted in any one of the channels at any data rate. The transmitted information is correlated at the smallest data rate (i.e., the tier 1 rate) in the correlation filter (CF) of the wireless system by time multiplexing delayed versions of the PN code to the correlation filter core. The correlated information is then demultiplexed and pilot aided QPSK demodulated. The demodulated information is summed at the proper integer multiple of the tier 1 rate to achieve the tier 2 and tier 3 rates. The three strongest multipaths (in terms of the received power) are selected in a window or time period for optimal information recovery. Furthermore, three outputs from the demodulated information can be provided and combined for temporal diversity. Spatial diversity is achieved by providing a plurality of antennas at each receiver and a single, common correlation filter at each of the plurality of antennas of the receivers in the wireless system.
Abstract:
In a method of controlling a searcher used in a wireless communication device supplied with a sequence of baseband reception data signals divisible into a sequence of frames, a current frame and preceding frames are selected which satisfy a first relationship. A current and preceding frame rates are statistically processed to obtain frequencies of combinations of the current and the preceding frame rates and to store the frequencies. The first relationship is determined by a difference between a processing time of correlators and the like and a delay time of a delay unit. A next frame search rate judgement portion statistically processes frequencies of combinations of the current and the preceding frame rates so as to calculate a next frame rate candidate in accordance with the first relationship. The next frame rate is predicted by using the next frame rate candidate with reference to a second relationship similar to the first relationship.