Abstract:
Embodiments described herein are directed to a lighting fixture including a lightguide that distributes light from a major surface, a light assembly including light sources arranged linearly, and a frame including a means for providing a force that urges the light assembly against an edge of the lightguide. A standoff or spacer can provide an air gap between a light source of the light assembly and the waveguide edge. In various embodiments, the lighting fixture may incorporate a spring, a spring finger, a spring clip, a screw, or other means for securing the light assembly against the edge of the lightguide. In this manner, substantially all light provided by the light assembly is emitted into the edge of the lightguide. The fixture is formed to accommodate tolerances among elements of the lighting fixture, while maintaining the light assembly securely against the edge of the lightguide.
Abstract:
A method of improving a comfort level of a participant in a demand-response program for a facility. The method includes providing a sensor to a participant of a demand-response program, the sensor for sensing a comfort indicator at a facility, the comfort indicator including at least an air temperature; providing instructions for installing the sensor at a facility of the participant; and causing a load-control event communicated to the LCD to be modified, the modification causing the comfort indicator to increase or decrease at the facility, thereby improving the comfort level of the participant in the demand-response program.
Abstract:
A system for mounting a light emitting diode (LED) wave guide down light retrofit fixture. The system can include a mounting plate having a number of apertures symmetrically positioned around a center of the mounting plate. The system can also include at least one fastening device mechanically coupled to an upper surface of the mounting plate using at least a first aperture of the apertures, where the at least one fastening device mechanically couples to a base of an existing fixture. The system can further include a coupling device mechanically coupled to a lower surface of the mounting plate. The system can also include a trim assembly having a frame and a LED light source mechanically coupled to the frame. The frame can have a coupling feature disposed on a top surface of the frame, where the coupling feature mechanically couples to the coupling device.
Abstract:
A fastening device for fastening a cover to a body of an explosion-proof enclosure can include a bracket having a back side mechanically coupled to a bottom side at a first angle and to a top side at a second angle, where the top side includes an engagement, portion, where the first angle is substantially parallel to an under side of the body flange, and where the second angle is substantially parallel to a top side of the cover flange. The fastening device can also include a cam fixedly coupled to an outer surface of the cover flange and hingedly coupled to the engagement portion. The fastening device can further include a lever fixedly coupled to the cam and having a closed position and an open position.
Abstract:
Endpoint device, central data collection point, and associated methods for collecting data over a communication network between endpoints and the central collection point. Actual measurements from a sensor are obtained by the endpoint device at a relatively fine time granularity. The endpoint device generates reports for receipt by a central data collection point. The reports include regular reports containing a portion of the actual measurements representing sensor measurements at a relatively coarse time granularity, and exception reports, containing information representing one or more of the actual measurements that differ in frequency or granularity of regular report measurements. Each of the exception reports is generated in response to a determination that at least one of the actual measurements differs from a predicted value for that at least one of the one or more actual measurements by an amount that exceeds a pre-established limit.
Abstract:
One or more switches in an occupancy sensor are enabled. When a switch is enabled, a reduction timer measuring a reduction time delay is initiated when an occupancy condition is detected by an occupancy sensor. In addition, one or more outputs controlled by the reduction timer are activated so that a signal is sent to a control system to notify the control systems of the occupancy condition. When the reduction time delay expires, the outputs of the occupancy sensor that are controlled by the reduction timer are deactivated, and so the outputs cease sending the signal to the control system. As a result, the control systems initiate their own internal time delays sooner.
Abstract:
A system for fastening a cover to a body of an explosion-proof enclosure using a plurality of fastening devices. Each fastening device can include a first load distributing member disposed on a body flange of a body of the explosion-proof enclosure. Each fastening device can also include a second load distributing member disposed on a cover flange of a cover of the explosion-proof enclosure. Each fastening device can further include a fastener positioned atop the first load distributing member, where the fastener traverses the first load distributing member, the cover flange, and the body flange. Each fastening device can also include a fastener receiver positioned under the second load distributing member and mechanically coupled to the fastener.
Abstract:
An emergency battery converter system provides a low-cost emergency battery converter and lighting system. The battery converter system includes an emergency battery pack, a lighting driver, and an emergency luminaire. In certain example embodiments, the emergency battery pack is coupled to a power delivery system and is charged by the power delivery system. The lighting driver receives power from the battery pack and steps up and regulates the power to be suitable for use by the emergency luminaire. In certain example embodiments, the emergency luminaire illuminates an egress area.
Abstract:
A digital sub-network interface unit includes a primary digital lighting interface port to couple to a primary lighting network. An address of the digital sub-network interface unit on the primary lighting network is manually set at the digital sub-network interface unit. The digital sub-network interface unit also includes a secondary digital lighting interface port to couple to a secondary lighting network. The digital sub-network interface unit further includes a lighting sub-network processor. The lighting sub-network processor is configured to assign addresses to a plurality of secondary lighting fixtures, and to receive commands from a primary digital lighting controller in association with an address of the digital sub-network interface unit. The lighting sub-network processor is also configured to control a plurality of secondary lighting fixtures based on the commands received from the primary digital lighting controller.
Abstract:
In one embodiment, the present invention is a method and apparatus for driving a light emitting diode strobe. One embodiment of a circuit for driving a current controlled light source includes an energy storage stage for storing a charge level and an energy delivery stage for drawing current from the energy storage stage and applying a fixed amount of current to the current controlled light source.