Abstract:
A receiver of a frequency-modulated signal is provided. The receiver includes a frequency-transposition unit for lowering the frequency of the frequency-modulated signal, and a digital demodulator for regenerating a digital signal from the frequency-transposed signal. The frequency-transposition unit includes a local oscillator for generating a local oscillator signal used in lowering the frequency of the frequency-modulated signal. The frequency-transposed signal is sampled in the digital demodulator at the rate of a sampling signal, and the sampling signal is generated by the local oscillator of the frequency-transposition unit. In a preferred embodiment, the local oscillator includes at least one frequency-divider circuit that delivers the sampling signal. Also provided is a method for regenerating a digital signal from a frequency-modulated signal.
Abstract:
A differential amplifier may include a first stage including a first transistor and a second transistor having the same polarity and assembled to constitute a differential amplifier. The first stage may be supplied by first and second mirror current sources. The differential amplifier may further include a common mode control circuit, which may include two inputs receiving a reference voltage VCM and a common mode voltage controlling the first and second mirror current sources, respectively. The differential amplifier may further include a Miller gain stage having inputs and for a setting gain-band product. The differential amplifier may further include an unlocking circuit, inserted between the common mode voltage and the Miller gain stage inputs, to cause the Miller gain stage to conduct on circuit start-up.
Abstract:
The vertical insulated gate transistor includes, on a semiconductor substrate, a vertical pillar incorporating one of the source and drain regions at the top, a gate dielectric layer situated on the flanks of the pillar and on the top surface of the substrate, and a semiconductor gate resting on the gate dielectric layer. The other of the source and drain regions is in the bottom part of the pillar PIL and the insulated gate includes an isolated external portion 15 resting on the flanks of the pillar and an isolated internal portion 14 situated inside the pillar between the source and drain regions. The isolated internal portion is separated laterally from the isolated external portion by two connecting semiconductor regions PL1, PL2 extending between the source and drain regions, and forming two very fine pillars.
Abstract:
A microprocessor comprises a central processing unit having an arithmetic and logic unit with two inputs and one input fed-back to one of the inputs through a data path. The arithmetic and logic unit performs arithmetic and logic operations on binary words temporarily stored within registers in the central processing unit. The central processing unit further includes a shift unit in the data path of the arithmetic and logic unit for performing operations to shift bits in the binary words applied thereto. A selection circuit selects a shift operation to be performed. An inverting circuit inverts the ordering of the bits in the binary words applied thereto, which are in the data path of the arithmetic and logic unit, and a selection circuit selects the inversion operation when the latter is required.
Abstract:
A structure of protection of an area of a semiconductor wafer including a lightly-doped substrate of a first conductivity type against high-frequency noise likely to be injected from components formed in the upper portion of a second area of the wafer. The structure includes a very heavily-doped wall of the first conductivity type having substantially the depth of the upper portion. The wall is divided into segments, each of which is connected to a ground plane.
Abstract:
A generator includes an oscillator for producing a clock signal from N logic signals representing an N-bit control number, with N being an integer greater than 1. The oscillator has Nnull1 components. The N most significant components are each assigned a place value i ranging from 1 to N, and a least significant component provides the clock signal. At least one component with a place value i greater than 1 includes first and second arms. The first arm includes a cell and a first switch connected in series, and the second arm includes 1null21 cells and a second switch connected in series. Each cell includes an odd number of inverters.
Abstract:
A modulation/demodulation device capable of operating with several types of modulation using different carrier frequencies may include a modulator which modulates at least one signal by a signal of a predetermined duration and representative of a binary information supplied by a microprocessor. The device may also include a demodulator which demodulates the modulated signals arriving from a remote site. This may be done by determining the type of modulation of the received signals and their carrier frequency (or frequencies), supplying signals from an analysis of the signals received according to the determined type of modulation, and detecting the signals of determined duration representative of binary information to make them accessible to the microprocessor.
Abstract:
A method for communicating between a transmitting unit and a receiving unit. A messages formed by elementary messages is transmitted from the transmitting unit to the receiving unit, and at least one reception bit is transmitted from the receiving unit to the transmitting unit. The reception bit (or bits) allows the transmitting unit to determine the elementary message that is to be transmitted next. In a preferred method, at least two reception bits are transmitted from the receiving unit and the values of the reception bits indicate the elementary message that is to be transmitted next by the transmitting unit. The present invention also provides a receiving device for receiving messages from a transmitting device. The receiving device includes an interface for receiving a transmitted message from the transmitting device, means for analyzing a received elementary message to determine if it was properly received, and a transmitter for transmitting at least one reception bit to the transmitting device. The reception bit (or bits) indicates the elementary message that is to be transmitted next by the transmitting unit. In one preferred embodiment, the transmitter transmits at least two reception bits whose values indicate the elementary message that is to be transmitted next by the transmitting unit.
Abstract:
A process for making a DRAM-type cell includes growing layers of silicon germanium and layers of silicon, by epitaxy from a silicon substrate; superposing a first layer of Nnull doped silicon and a second layer of P doped silicon; and forming a transistor on the silicon substrate. The method also includes etching a trench in the extension of the transistor to provide an access to the silicon germanium layers relative to the silicon layers over a pre-set depth to form lateral cavities, and forming a capacitor in the trench and in the lateral cavities.
Abstract:
A non-volatile memory cell includes a MOS transistor having a ring arrangement and comprising a floating gate, a center electrode at a center of the ring arrangement and surrounding the floating gate, and at least one peripheral electrode along a periphery of the ring arrangement.