Abstract:
The invention relates to a catalyst including an amorphous alumina support, C1-C4 dialkyl succinate, citric acid and optionally acetic acid, phosphorus, and a hydro-dehydrogenating function including at least one group VIII element and at least one group VIB element, a catalyst, the Raman spectrum of which includes the most intense bands characteristic of the Keggin heteropolyanions (974 and/or 990 cm-1), of C1-C4 dialkyl succinate, and of citric acid (particularly, 785 and 956 cm-1). The invention also relates to the method for preparing said catalyst in which a catalytic precursor in the dried, calcined, or reclaimed state and containing the elements of the hyro-dehydrogenation function, and optionally phosphorus, is impregnated with an impregnation solution including at least one C1-C4 dialkyl succinate, citric acid, and optionally at least one phosphorus compound and optionally acetic acid, and is then dried. The invention also relates to the use of said catalyst in any hydrotreatment process.
Abstract:
L'invention concerne un procédé de préparation d'un catalyseur comprenant au moins a) la préparation d'un support comprenant de 0,2 à 30 % poids de zéolithe NU-86 et de 70 à 99,8% poids d'une matrice minérale poreuse, les pourcentages poids étant exprimés par rapport à la masse totale dudit support, b) au moins une étape d'imprégnation dudit support préparé selon l'étape a) par au moins une solution contenant au moins un précurseur d'au moins un métal choisi dans le groupe formé par les métaux du groupes VIII et les métaux du groupe VIB, pris seuls ou en mélange, c) au moins une étape de maturation, d) au moins une étape de séchage réalisée à une température inférieure à 150°C, sans étape de calcination ultérieure. La présente invention concerne également un procédé d'hydrocraquage de charges hydrocarbonées utilisant le catalyseur préparé selon ledit procédé de préparation selon l'invention.
Abstract:
The present invention relates to a hydroprocessing catalyst comprising: (i) one or more hydrogenation metal components selected from a group consisting of VIB group metal, VIIB group metal and VIII group metal; and (ii) an organic compound expressed by the following chemical formula 1 or an organic metal compound expressed by the following chemical formula 2. Chemical formula 1: R1COCH2COR2 (where, R1 and R2 are the same or different from each other, and are one or more groups selected from a group consisting of C1 to C12 alkyl, C6 to C12 allyl, C1 to C12 alkoxy and hydroxy). Chemical formula 2: X( R1COCH1COR2)n (where, X is selected from a group consisting of VIB group metal, VIIB group metal and VIII group metal, R1 and R2 are the same or different from each other, and are one or more groups selected from a group consisting of C1 to C12 alkyl, C6 to C12 allyl, C1 to C12 alkoxy and hydroxy, and n is an integer of 1 to 6).
Abstract:
Provided are catalyst systems, processes for polymerizing one or more olefins, polymers resulting therefrom, and articles prepared from such polymers. The processes comprise contacting under polymerization conditions one or more olefin monomers, preferably propylene, with a catalyst system comprising a transition metal compound and an activator of the formula (1) or (2) as described herein. The polymer compositions described herein exhibit advantageously narrow composition distributions and high melting points in comparison to conventional polymers having the same comonomer content. The polymers described herein exhibit improved properties, e.g., pellet stability, impact properties, heat seal properties, and structural integrity in film and fabricated parts applications.
Abstract:
A modified Ziegler-Natta catalyst system, a method for preparing the catalyst system, and a process for polymerizing an olefin in the presence of the catalyst system are disclosed. The catalyst system comprises a titanium or vanadium compound, an aluminum compound, and a 2-hydroxypyridine N-oxide. Improved properties such as increased molecular weight are obtained.
Abstract:
Provided are catalyst systems, processes for polymerizing one or more olefins, polymers resulting therefrom, and articles prepared from such polymers. The processes comprise contacting under polymerization conditions one or more olefin monomers, preferably propylene, with a catalyst system comprising a transition metal compound and an activator of the formula (1) or (2) as described herein. The polymer compositions described herein exhibit advantageously narrow composition distributions and high melting points in comparison to conventional polymers having the same comonomer content. The polymers described herein exhibit improved properties, e.g., pellet stability, impact properties, heat seal properties, and structural integrity in film and fabricated parts applications.
Abstract:
A composition that comprises a support material having incorporated therein a metal component and impregnated with both hydrocarbon oil and a polar additive. The composition that is impregnated with both hydrocarbon oil and polar additive is useful in the hydrotreating of hydrocarbon feedstocks, and it is especially useful in applications involving delayed feed introduction whereby the composition is first treated with hot hydrogen, and, optionally, with a sulfur compound, prior to contacting it with a hydrocarbon feedstock under hydrodesulfurization process conditions.
Abstract:
Catalysts suitable for use in reforming hydrocarbons have a halogen promoter and a plurality of dispersed nanocatalyst particles supported on a solid support. The dispersed nanocatalyst particles are manufactured using a dispersing agent to control 5 the size and/or crystal face exposure of the particles. The controlled size and dispersion of the nanocatalyst particles allows the reforming catalyst to be loaded with significantly less halogen promoter while still maintaining or increasing the catalyst's reforming performance. The catalysts of the present invention have shown improved C5+ production with the significantly reduced levels of halogen promoter.
Abstract:
Hydroxyaromatic compounds such as phenol are carbonylated with oxygen and carbon monoxide in the presence of a catalyst system comprising a Group VIII metal having an atomic number of at least 44, preferably palladium; an alkali metal or alkaline earth metal halide, preferably sodium bromide; and at least one aliphatic polyether such as a polyethylene glycol dimethyl ether or a crown ether. The catalyst system also preferably contains a compound of another metal, preferably lead.
Abstract:
An aqueous epoxidation process stream containing molybdenum and sodium values is incinerated and an aqueous solution containing molybdenum and sodium is recovered, acidified and reacted with a calcium compound without first adding base to form solid CaMoO4 which is separated.