Abstract:
An image-forming method includes: exposing a negative type image-forming material including a support and an image-recording layer containing a binder polymer containing at least one group capable of being converted to a sulfonate upon a reaction with an aqueous solution containing at least one of a sulfite and a bisulfite, a sensitizing dye, a polymerization initiator, and a compound having an ethylenically unsubstituted bond; and removing an unexposed area of the image-recording layer with an aqueous solution containing at least one of a sulfite and a bisulfite.
Abstract:
A photosensitive composition includes a cyanine dye that has, on a methine chain thereof, a substituent which is a cation moiety of an onium salt structure.
Abstract:
A lithographic printing plate precursor includes a support, and an image-recording layer, the image-recording layer contains a urethane resin having a polyalkylene oxide chain represented by the formula (1) as defined herein in a side chain, an infrared absorbing agent, a radical polymerizable compound and a radical polymerization initiator, and an unexposed area of the image-recording layer is capable of being removed with at least one of dampening water and ink.
Abstract:
Provided are, as a lithographic printing plate precursor that enables good development with a developer having a pH from 2 to 10 and is excellent in runlength and stain resistance and a production process of a lithographic printing plate using the precursor, a lithographic printing plate precursor whose photosensitive layer contains the following components (A), (B), and (C): (A) a copolymer having a repeating unit of the formula (1) and at least one of a repeating unit of the formula (2) and a repeating unit of the formula (3): wherein each of A and B independently represents a hetero atom, each of R and R1 to R9 represents a monovalent substituent, L represents a divalent linking group, X represents a hydroxyl group, a monovalent group containing an acid group, an alkyleneoxy group, an amide group, or an ether group, an amino group, an ammonium group, or a salt obtained by neutralizing an acid group, and L0 represents a single bond or divalent hydrocarbon group, (B) a compound having an ethylenically unsaturated bond, and (c) a polymerization initiator; and a production process of a lithographic printing plate by using the precursor.
Abstract:
A lithographic printing plate precursor, which comprises: a support; an image-recording layer; and a protective layer, in this order, wherein at least one of the image-recording layer and the protective layer comprises a phosphonium salt having a specific structure, and a lithographic printing process, which comprises: exposing a lithographic printing plate precursor; supplying an oil-based ink and a fountain solution comprising a phosphonium salt having a specific structure to the exposed lithographic printing plate precursor on a printing machine to remove an unexposed area of an image-recording layer; and conducting printing.
Abstract:
A lithographic printing plate precursor includes: a support; and a photosensitive layer containing a binder polymer containing a positively charged nitrogen atom in at least one of a main chain and a side chain of the binder polymer, a compound containing an ethylenically unsubstituted bond; and a radical polymerization initiator.
Abstract:
A lithographic printing plate precursor includes in the following order: a support; an image-recording layer containing (A) an infrared absorbing agent, (B) a polymerization initiator and (C) a polymerizable compound; and a protective layer, an unexposed area of the image-recording layer is capable of being removed with at least one of printing ink and dampening water on a printing machine, and the lithographic printing plate precursor contains a compound represented by the following formula (I): wherein R1 represents an alkyl, alkenyl or aryl group having from 6 to 36 carbon atoms which may have a substituent, R2 and R3 each independently represents a methyl group, an ethyl group, a hydroxyethyl group or a hydroxypropyl group, L represents a single bond or a divalent connecting group, and n represents an integer of from 0 to 11.
Abstract:
The present invention provides a planographic printing plate precursor, including: a support; and a photosensitive layer containing a polymerizable compound; an oxygen barrier layer; and a protective layer containing a filler (preferably an organic resin particle), the layers being formed in this order on the support. The present invention also provides a stack of planographic printing plate precursors, produced by stacking the planographic printing plate precursors with the photosensitive layer side outermost layer and the support side rear surface of the adjacent plate precursor in direct contact with each other.
Abstract:
An on-press ink and/or fountain solution developable lithographic printing plate comprising a photosensitive layer over an electrochemically grained, anodized, hydrophilically treated aluminum substrate with a reflection optical density of at least 0.30 is disclosed. The photosensitive layer is soluble or dispersible in ink and/or fountain solution and capable of hardening upon exposure to a laser having a wavelength of from 200 to 1200 nm. The plate is exposed with the laser off press or on press, and then on-press developed with ink and/or fountain solution. Such darker aluminum substrate in combination with the hydrophilic treatment allows fast press roll up, clean background, and good printing durability of the plate.
Abstract:
A polymer having a polymerizable group and an alkyleneoxy groups on side chains thereof, and a polymerizable composition containing the polymer. The polymerizable composition preferably contains a polymerizable compound and a polymerization initiator. Also provided is a planographic printing plate precursor having a polymerizable layer on a hydrophilic support, the polymerizable layer containing a polymer having a polymerizable on a side chain thereof. The planographic printing plate precursor can form an image without being subjected to an alkali development. An undercoat layer containing a specific copolymer may be provided between the support and the photopolymerizable layer.