Abstract:
A modular transfer system with a primary flow system and a diverter system. The primary flow system includes a primary flow belt for conveying an article along a primary flow path from an infeed side of the modular transfer system to a pass-through side of the modular transfer system. The diverter system includes one or more diverter belts for diverting an article from the primary flow path towards a divert side of the modular transfer system. The primary flow belt includes multiple movable components contacting the diverter belt. The movable components can have one or more rotational degrees of freedom.
Abstract:
A device for transferring units of goods has a suspended conveyor system on which conveyor units can be conveyed in a suspended manner along a continuous conveyor path. In an entry region, supplied conveyor units can be provided for further processing. Downstream of said entry region, a transfer device is provided in a transfer region, with which units of goods can be transferred into and/or out of a conveyor unit located in the transfer region. Downstream of said transfer region, processed conveyor units can be provided in an exit region for further use. The absolute alignment in space of a conveyor unit in the entry region and in the transfer region are substantially the same, and the relative alignment in relation to the conveying direction in the entry region and the transfer region are substantially different. Alternatively or additionally, the absolute alignment in space of a conveyor unit in the transfer region and in the exit region are substantially the same, and the relative alignment in relation to the conveying direction in the transfer region and in the exit region are substantially different.
Abstract:
A conveying unit (10) for the suspended transport of transport elements (40) in a conveyor system, in particular a rail-guided (86) conveyor system or a conveyor-chain system, includes a support hook (21) attached to a conveying element (20), in particular a carriage or a conveyor-chain link, a transport element (40), and a suspension hook (41) attached to the transport element, wherein the suspension hook is mounted in a suspended manner in the support hook. The support hook is configured such that the suspension hook can take up two stable positions (61, 62) in the support hook. The suspension hook (41) in a first stable position (61) has been turned through an angle with respect to the suspension hook in a second stable position (62).
Abstract:
A system automatically loads a bin with a filled deformable container such as a sack of produce being conveyed along horizontal rollers. A movable support structure has a coupling end attachable to a robotic arm, and a lifting end supporting a plurality of parallel rods. By means of the robotic arm and a programmable logic controller, the plurality of parallel rods can be positioned between and parallel to the horizontal rollers, raised when the container is conveyed to a loading position above the parallel rods, moved to a predetermined position above the bin, and rotated to allow the container to slide downward along the parallel rods and into the bin under force of gravity. The loading sequence can be repeated a number of times, changing the predetermined position each time to stack a plurality of the containers in a desired configuration such as overlapping rows of offset sacks.
Abstract:
An assembly (10) to dispatch bags (14). The assembly (10) includes a conveyor (12) that provides rows of bags (14), with the rows of bags (14) supported on a first delivery assembly (18) that moves each row downward to form stacks (47) of bags (14) on a second delivery assembly (34). Stacks (14) of the bags (14) are then moved downward to be moved into containers or boxes.
Abstract:
The present disclosure relates to a discharge apparatus for discharging a plurality of flexible spouted containers, the apparatus comprising: a container support comprising a support element with an elongated opening for carrying a row of spouts of a plurality of spouted containers from an inlet to an outlet, wherein the inlet of the support element is configured to receive successive batches of spouted containers in the elongated opening; a biasing unit configured to move at least a subset of the spouts received inside the elongated opening in the support element towards the outlet, wherein the biasing unit further is configured to continuously apply a biasing force to the subset of spouts to continuously discharge the containers from the outlet.
Abstract:
An apparatus and method for distributing articles made by series production is configured to deliver articles to selected storage positions in side-by-side rows of adjacent storage positions for stacked articles in a storage compartment. After selection of a storage position, a transport platform movably mounted on a horizontally movable carriage above the rows is driven to a location above the selected storage position with the platform moved between two possible positions for dispensing articles into the respective rows, an article conveyor on the platform is actuated to transport the article off the platform into the underlying storage position, where it is stacked on top of any previously stacked articles, and the platform is driven back to a start position to receive the next article. The procedure is repeated to distribute subsequent articles to selected storage positions in the storage area.
Abstract:
This device comprises a pair of parallel arms (1, 2) having clamps (11, 21) for clamping the packages (E) to be transported and means for regulating separation which comprise:—a scissor mechanism (4) having two rods (41, 42) articulated to the rear end of the arms (1, 2) and carrying roller means (46, 47);—guide sections (5, 5a . . . ) distributed on the packaging machine, provided with a longitudinal track (51) for guiding the roller means (46, 47) of the scissor mechanism (4) and—actuating means (7) suited to moving each guide section (5, 5a) and arranging the latter in a position suited to determining the separation of each pair of parallel arms (1, 2) in each area of the route of the transport device by means of a variation in longitude of the scissor mechanism (4).
Abstract:
A robotic container reorganizer has a robot arm that holds a robotic tool. The robotic tool can reconfigure a plurality of articles from a first configuration to a second configuration. The robotic arm may pick up a collection of articles in a first configuration with the robotic tool, and may reconfigure the articles with the robotic tool into a second configuration. The second configuration of articles may be set down after reconfiguration. The first configuration of articles has a first width and a first length, and the second configuration has a second length and a second width. The first width and the first length of the first configuration differ from the second width and the second length of the second configuration.
Abstract:
An apparatus and method for distributing articles made by series production is configured to deliver articles to selected storage positions in side-by-side rows of adjacent storage positions for stacked articles in a storage compartment. After selection of a storage position, a transport platform movably mounted on a horizontally movable carriage above the rows is driven to a location above the selected storage position with the platform moved between two possible positions for dispensing articles into the respective rows, an article conveyor on the platform is actuated to transport the article off the platform into the underlying storage position, where it is stacked on top of any previously stacked articles, and the platform is driven back to a start position to receive the next article. The procedure is repeated to distribute subsequent articles to selected storage positions in the storage area.