Abstract:
A composite cable or rope is described. The cable or rope has an inner metallic rope or core, consisting of a plurality of metal strands, and a plurality of covering layers formed around the inner metallic core. An innovative anchoring and safety system is also described. The system has one or more anchorages, fixed to the roof, in each of which the rope is stably locked by screwing, so as not to create instability problems for people attached to the rope.
Abstract:
The present disclosure comprises providing a cable core encased in a polymeric layer, cabling a first armor wire layer about the cable core, cabling a second armor wire layer about the first armor wire layer to form the cable, each of the armor wire layers comprising a plurality of strength members, at least one of the armor wire layers comprising a plurality of strength members having a polymeric layer bonded thereto.
Abstract:
The abrasion resistance of organic fiber based ropes and cords is increased by a outer woven cover of tapes of high molecular weight and more preferably ultrahigh molecular weight polyethylene.
Abstract:
An elevator rope of the present invention includes: a rope main body; and a covering resin layer that covers the periphery of the rope main body, the covering resin layer obtained by cross-linking a molded product of a composition comprising a thermoplastic polyurethane elastomer and a vinyl compound having two or more vinyl groups per molecule or a molded product of a thermoplastic polyurethane elastomer formed by using a polyol having a vinyl group for each molecule. In order to further stabilize the friction coefficient, inorganic fillers such as talc, a glass fiber and titanium oxide may be further mixed in the composition. The elevator rope of the present invention has a stable friction coefficient that does not depend on temperature or sliding velocity.
Abstract:
The abrasion resistance of organic fiber based ropes and cords is increased by a outer woven cover of tapes of high molecular weight and more preferably ultrahigh molecular weight polyethylene
Abstract:
An elevator rope of the present invention includes: a rope main body; and a covering resin layer that covers the periphery of the rope main body and comprises a molded product of a composition for forming the covering resin layer, wherein the composition is produced by mixing a thermoplastic polyurethane elastomer, a thermoplastic resin other than the thermoplastic polyurethane elastomer and an isocyanate compound having two or more isocyanate groups per molecule. Preferably, a rope main body impregnated with an impregnating solution comprising a hydroxy compound having two or more hydroxy groups per molecule and an isocyanate compound having two or more isocyanate groups per molecule and having a lower viscosity than a melt viscosity of the composition for forming the covering resin layer is used as the rope main body. The elevator rope of the present invention has a stable friction coefficient that does not depend on temperature or sliding velocity.
Abstract:
A rope with a core and a casing surrounding the core. The core is composed of a multitude of synthetic fibers and the casing is composed of a multitude of synthetic fibers that are interlaced with one another. The synthetic fibers that form the casing are composed of polytetrafluoroethylene and form a lightproof and fluid-repellent envelope for the core.
Abstract:
A cut and abrasion resistant webbing includes a main body (1) and a cut and abrasion resistant protection (3) attached over the main body. The main body is made from a high tenacity fiber, and the protection is made from a plastisol mixture forming a paste. A method of manufacturing the webbing includes steps of: applying the main body by weaving or not weaving fiber; and coating a cut and abrasion resistant paste onto the main body, then curing and drying, finally forming a cut and abrasion resistant protection on the surface of the webbing. The anti cut and anti abrasion webbing for lifting, sling, lashing, tie down and lanyard becomes very tough to abrasion and cut. And the life cycle thereof can be improved over 2 to 10 times than the actual manufactured ones.
Abstract:
A safety elastic rope includes an elastic outer tubular rope having two longitudinally opposite first fixing ends, and an elastic inner rope inserted into the outer tubular rope and having two longitudinally opposite second fixing ends. The inner rope is more elastic than the outer tubular rope, and has substantially the same length as the outer tubular rope. The second fixing ends are connected respectively to the first fixing ends.